IMF Working Papers describe research in progress by the author(s) and are published to elicit
comments and to encourage debate. The views expressed in IMF Working Papers are those of the
author(s) and do not necessarily represent the views of the IMF, its Executive Board, or IMF management.
IMF Working Papers describe research in progress by the author(s) and are published to elicit
comments and to encourage debate. The views expressed in IMF Working Papers are those of the
author(s) and do not necessarily represent the views of the IMF, its Executive Board, or IMF management.
We investigate the issue of model uncertainty in cross-country growth regressions using Bayesian model averaging (BMA). We find that the posterior probability is distributed among many models, suggesting the superiority of BMA over any single model. Out-of-sample predictive results support that claim. In contrast with Levine and Renelt (1992), our results broadly support the more “optimistic” conclusion of Sala-i-Martin (1997b), namely, that some variables are important regressors for explaining cross-country growth patterns. However, the variables we identify as most useful for growth regression differ substantially from Sala-i-Martin’s results.