Middle East and Central Asia > Qatar

You are looking at 1 - 6 of 6 items for :

  • Type: Journal Issue x
  • Neural Networks and Related Topics x
Clear All Modify Search
Tsendsuren Batsuuri
,
Shan He
,
Ruofei Hu
,
Jonathan Leslie
, and
Flora Lutz
This study applies state-of-the-art machine learning (ML) techniques to forecast IMF-supported programs, analyzes the ML prediction results relative to traditional econometric approaches, explores non-linear relationships among predictors indicative of IMF-supported programs, and evaluates model robustness with regard to different feature sets and time periods. ML models consistently outperform traditional methods in out-of-sample prediction of new IMF-supported arrangements with key predictors that align well with the literature and show consensus across different algorithms. The analysis underscores the importance of incorporating a variety of external, fiscal, real, and financial features as well as institutional factors like membership in regional financing arrangements. The findings also highlight the varying influence of data processing choices such as feature selection, sampling techniques, and missing data imputation on the performance of different ML models and therefore indicate the usefulness of a flexible, algorithm-tailored approach. Additionally, the results reveal that models that are most effective in near and medium-term predictions may tend to underperform over the long term, thus illustrating the need for regular updates or more stable – albeit potentially near-term suboptimal – models when frequent updates are impractical.
Chris Redl
and
Sandile Hlatshwayo
We produce a social unrest risk index for 125 countries covering a period of 1996 to 2020. The risk of social unrest is based on the probability of unrest in the following year derived from a machine learning model drawing on over 340 indicators covering a wide range of macro-financial, socioeconomic, development and political variables. The prediction model correctly forecasts unrest in the following year approximately two-thirds of the time. Shapley values indicate that the key drivers of the predictions include high levels of unrest, food price inflation and mobile phone penetration, which accord with previous findings in the literature.
Mr. Jorge A Chan-Lau
We introduce unFEAR, Unsupervised Feature Extraction Clustering, to identify economic crisis regimes. Given labeled crisis and non-crisis episodes and the corresponding features values, unFEAR uses unsupervised representation learning and a novel mode contrastive autoencoder to group episodes into time-invariant non-overlapping clusters, each of which could be identified with a different regime. The likelihood that a country may experience an econmic crisis could be set equal to its cluster crisis frequency. Moreover, unFEAR could serve as a first step towards developing cluster-specific crisis prediction models tailored to each crisis regime.
Marijn A. Bolhuis
and
Brett Rayner
We leverage insights from machine learning to optimize the tradeoff between bias and variance when estimating economic models using pooled datasets. Specifically, we develop a simple algorithm that estimates the similarity of economic structures across countries and selects the optimal pool of countries to maximize out-of-sample prediction accuracy of a model. We apply the new alogrithm by nowcasting output growth with a panel of 102 countries and are able to significantly improve forecast accuracy relative to alternative pools. The algortihm improves nowcast performance for advanced economies, as well as emerging market and developing economies, suggesting that machine learning techniques using pooled data could be an important macro tool for many countries.
Marijn A. Bolhuis
and
Brett Rayner
We develop a framework to nowcast (and forecast) economic variables with machine learning techniques. We explain how machine learning methods can address common shortcomings of traditional OLS-based models and use several machine learning models to predict real output growth with lower forecast errors than traditional models. By combining multiple machine learning models into ensembles, we lower forecast errors even further. We also identify measures of variable importance to help improve the transparency of machine learning-based forecasts. Applying the framework to Turkey reduces forecast errors by at least 30 percent relative to traditional models. The framework also better predicts economic volatility, suggesting that machine learning techniques could be an important part of the macro forecasting toolkit of many countries.
Jin-Kyu Jung
,
Manasa Patnam
, and
Anna Ter-Martirosyan
Forecasting macroeconomic variables is key to developing a view on a country's economic outlook. Most traditional forecasting models rely on fitting data to a pre-specified relationship between input and output variables, thereby assuming a specific functional and stochastic process underlying that process. We pursue a new approach to forecasting by employing a number of machine learning algorithms, a method that is data driven, and imposing limited restrictions on the nature of the true relationship between input and output variables. We apply the Elastic Net, SuperLearner, and Recurring Neural Network algorithms on macro data of seven, broadly representative, advanced and emerging economies and find that these algorithms can outperform traditional statistical models, thereby offering a relevant addition to the field of economic forecasting.