Business and Economics > Information Management

You are looking at 1 - 2 of 2 items for :

  • Type: Journal Issue x
  • Economic Forecasting x
Clear All Modify Search
Metodij Hadzi-Vaskov
,
Mr. Luca A Ricci
,
Alejandro Mariano Werner
, and
Rene Zamarripa
This paper investigates the performance of the IMF WEO growth forecast revisions across different horizons and country groups. We find that: (i) growth revisions in horizons closer to the actual are generally larger, more volatile, and more negative; (ii) on average, growth revisions are in the right direction, becoming progressively more responsive to the forecast error gap as horizons get closer to the actual year; (iii) growth revisions in systemic economies are relevant for growth revisions in all country groups; (iv) WEO and Consensus Forecast growth revisions are highly correlated; (v) fall-to-spring WEO revisions are more correlated with Consensus Forecasts revisions compared to spring-to-fall revisions; and (vi) across vintages, revisions for a given time horizon are not autocorrelated; within vintages, revisions tend to be positively correlated, suggesting perception of persistent short-term shocks.
Diego A. Cerdeiro
,
Andras Komaromi
,
Yang Liu
, and
Mamoon Saeed
Maritime data from the Automatic Identification System (AIS) have emerged as a potential source for real time information on trade activity. However, no globally applicable end-to-end solution has been published to transform raw AIS messages into economically meaningful, policy-relevant indicators of international trade. Our paper proposes and tests a set of algorithms to fill this gap. We build indicators of world seaborne trade using raw data from the radio signals that the global vessel fleet emits for navigational safety purposes. We leverage different machine-learning techniques to identify port boundaries, construct port-to-port voyages, and estimate trade volumes at the world, bilateral and within-country levels. Our methodology achieves a good fit with official trade statistics for many countries and for the world in aggregate. We also show the usefulness of our approach for sectoral analyses of crude oil trade, and for event studies such as Hurricane Maria and the effect of measures taken to contain the spread of the novel coronavirus. Going forward, ongoing refinements of our algorithms, additional data on vessel characteristics, and country-specific knowledge should help improve the performance of our general approach for several country cases.