Search Results

You are looking at 1 - 10 of 24 items for :

  • Keyword: deposit guarantee x
  • Intelligence (AI) & Semantics x
Clear All Modify Search
Mr. Marco Marini and Mr. Tommaso Di Fonzo
This work presents a new technique for temporally benchmarking a time series according to the growth rates preservation principle (GRP) by Causey and Trager (1981). A procedure is developed which (i) transforms the original constrained problem into an unconstrained one, and (ii) applies a Newton's method exploiting the analytic Hessian of the GRP objective function. We show that the proposed technique is easy to implement, computationally robust and efficient, all features which make it a plausible competitor of other benchmarking procedures (Denton, 1971; Dagum and Cholette, 2006) also in a data-production process involving a considerable amount of series.
Jin-Kyu Jung, Manasa Patnam, Anna Ter-Martirosyan, and Mr. Vikram Haksar

Forecasting macroeconomic variables is key to developing a view on a country's economic outlook. Most traditional forecasting models rely on fitting data to a pre-specified relationship between input and output variables, thereby assuming a specific functional and stochastic process underlying that process. We pursue a new approach to forecasting by employing a number of machine learning algorithms, a method that is data driven, and imposing limited restrictions on the nature of the true relationship between input and output variables. We apply the Elastic Net, SuperLearner, and Recurring Neural Network algorithms on macro data of seven, broadly representative, advanced and emerging economies and find that these algorithms can outperform traditional statistical models, thereby offering a relevant addition to the field of economic forecasting.

International Monetary Fund. External Relations Dept.

IMF Managing Director Michel Camdessus expressed his formal condolences on the death of the King of Jordan. Following is the text of news brief 99/6, issued on February 7.

Ms. Ghada Fayad, Chengyu Huang, Yoko Shibuya, and Peng Zhao
This paper applies state-of-the-art deep learning techniques to develop the first sentiment index measuring member countries’ reception of IMF policy advice at the time of Article IV Consultations. This paper finds that while authorities of member countries largely agree with Fund advice, there is variation across country size, external openness, policy sectors and their assessed riskiness, political systems, and commodity export intensity. The paper also looks at how sentiment changes during and after a financial arrangement or program with the Fund, as well as when a country receives IMF technical assistance. The results shed light on key aspects on Fund surveillance while redefining how the IMF can view its relevance, value added, and traction with its member countries.
Ms. Natasha X Che
This paper presents a set of collaborative filtering algorithms that produce product recommendations to diversify and optimize a country's export structure in support of sustainable long-term growth. The recommendation system is able to accurately predict the historical trends in export content and structure for high-growth countries, such as China, India, Poland, and Chile, over 20-year spans. As a contemporary case study, the system is applied to Paraguay, to create recommendations for the country's export diversification strategy.
Nan Hu, Jian Li, and Alexis Meyer-Cirkel
We compared the predictive performance of a series of machine learning and traditional methods for monthly CDS spreads, using firms’ accounting-based, market-based and macroeconomics variables for a time period of 2006 to 2016. We find that ensemble machine learning methods (Bagging, Gradient Boosting and Random Forest) strongly outperform other estimators, and Bagging particularly stands out in terms of accuracy. Traditional credit risk models using OLS techniques have the lowest out-of-sample prediction accuracy. The results suggest that the non-linear machine learning methods, especially the ensemble methods, add considerable value to existent credit risk prediction accuracy and enable CDS shadow pricing for companies missing those securities.
Jin-Kyu Jung, Manasa Patnam, and Anna Ter-Martirosyan
Forecasting macroeconomic variables is key to developing a view on a country's economic outlook. Most traditional forecasting models rely on fitting data to a pre-specified relationship between input and output variables, thereby assuming a specific functional and stochastic process underlying that process. We pursue a new approach to forecasting by employing a number of machine learning algorithms, a method that is data driven, and imposing limited restrictions on the nature of the true relationship between input and output variables. We apply the Elastic Net, SuperLearner, and Recurring Neural Network algorithms on macro data of seven, broadly representative, advanced and emerging economies and find that these algorithms can outperform traditional statistical models, thereby offering a relevant addition to the field of economic forecasting.