Handbook on Residential Property Prices Indices (RPPIs)

2013 edition
Handbook on Residential Property Prices Indices (RPPIs)

2013 edition

©International Monetary Fund. Not for Redistribution
Europe Direct is a service to help you find answers to your questions about the European Union.

Freephone number (*):
00 800 6 7 8 9 10 11

(*): Certain mobile telephone operators do not allow access to 00 800 numbers or these calls may be billed.

Cataloguing data can be found at the end of this publication.

doi:10.2785/34007
Cat. No KS-RA-12-022-EN-N

Theme: Economy and finance
Collection: Methodologies & Working papers

Reproduction is authorised provided the source is acknowledged.

Photo credits: © Phovoir
Reproduction of photos is allowed for non-commercial purposes and within the sole context of this publication.

Printed in Belgium

PRINTED ON ELEMENTAL CHLORINE-FREE BLEACHED PAPER (ECF)

Also available under the title Handbook on Residential Property Prices Indices (RPPIs),

ILO
ISBN 978-92-2-127360-8 (PDF)

OECD
ISBN 978-92-6-419718-3 (PDF)

The opinions expressed and arguments employed herein do not necessarily reflect the official views of the ILO, IMF, OECD, UNECE, the World Bank or of the governments of their member countries or those of Eurostat or the European Commission.
Table of contents

Foreword – RPPI
Preface
1. Introduction
2. Uses of Residential Property Price Indices
3. Elements for a Conceptual Framework
4. Stratification or Mix Adjustment Methods
5. Hedonic Regression Methods
6. Repeat Sales Methods
7. Appraisal-Based Methods
8. Decomposing an RPPI into Land and Structures Components
9. Data Sources
10. Methods Currently Used
11. Empirical Examples
12. Recommendations
Glossary
Bibliography
Index
List of tables

3.1. Estimated Rent to Value Ratios as Percentages (Capitalization Ratios) ... 35
4.1. Sample Probability of a Sale in Each Cell .. 43
4.2. Matched Model Fisher Chained and Fixed Base Price Indices, Mean, Median and Representative Model Price Indices .. 45
4.3. Rolling Year Fixed Base Fisher, Fisher Chained Moving Average and Fisher Fixed Base Moving Average Price Indices .. 47
5.1. Log-Linear Time Dummy Price Indices and the Chained Stratified Sample Mean Fisher Price Index ... 60
5.2. Linear Time Dummy Price Indices, the Log Log Time Dummy Price Index and the Chained Stratified Sample Mean Fisher Price Index ... 62
5.3. Chained Laspeyres, Paasche and Fisher Hedonic Imputation Price Indices ... 64
6.1. Repeat Sales Price Index, Chained Stratified Sample Mean Fisher Price Index and Hedonic Imputation Fisher Price Index .. 71
7.1. SPAR Index, Hedonic Imputation Fisher Price Index and Repeat Sales Index .. 79
8.1. The Price of Land (P_{l1}), the Price of Quality Adjusted Structures (P_{s1}), the Overall Cost of Production House Price Index (P_{w}) and the Fisher Hedonic Imputation House Price Index 86
8.2. The Price of Land (P_{l}), the Price of Structures (P_{s}), the Overall Price Index Using Splines on Land (P_{w}) and the Fisher Hedonic Imputation Price Index ... 88
8.3. The Price of Land (P_{l}), the Price of Quality Adjusted Structures (P_{s}), the Overall House Price Index with Monotonicity Restrictions on Structures (P_{w}) and the Overall House Price Index Using Splines on Land (P_{w}) .. 90
8.4. The Price of Land (P_{l}), the Price of Quality Adjusted Structures (P_{s}) and the Overall House Price Index using Exogenous Information on the Price of Structures (P_{w}) ... 92
8.5. House Price Indices Using Exogenous Information (P_{w}) and Using Monotonicity Restrictions (P_{w}), the Chained Fisher Hedonic Imputation Index and the Chained Fisher Stratified Sample Index .. 93
8.6. The Price of Land (P_{l}), the Price of Quality Adjusted Structures (P_{s}), the Overall House Price Index using Exogenous Information on the Price of Structures (P_{w}) and their Rolling Window Counterparts (P_{w}^{RM}) and (P_{w}^{RM}) .. 95
8.7. Approximate Stock Price Indices and Based on Hedonic Imputation (P_{Stock}^{H}) and Stratification (P_{Stock}^{S}) and the Fisher Hedonic Imputation Sales Price Index ... 97
8.8. Approximate Price Indices for the Stock of Houses (P_{Stock}^{H}), the Stock of Land (P_{Stock}^{L}) and the Stock of Structures (P_{Stock}^{S}) and the Corresponding Sales Indices (P_{Stock}^{LS} and P_{w}) .. 99
10.1. Indices of Property Prices Published in Japan .. 123
10.2. Indices of Residential Property Prices – Published in the UK .. 128
10.3. Tenure Status – All Housing in South Africa (According to Census 2001) ... 134
10.4. Distribution of Number of Rooms in Informal Dwellings ... 135
10.5. Price Determinants .. 136
10.6. Percentage of Materials Used in the Construction of Informal and Traditional Dwellings in South Africa .. 136
10.7. Evaluation of Barriers ... 137
11.1. Means, Medians, Percent Changes, Standard Deviations, and Skewness .. 141
11.2. Regional Expenditures, Prices and Volumes (Implicit Quantities) Using Median Prices as the Regional Prices .. 143
11.3. Overall House Price Indices using Median Prices and Alternative Formulae to Aggregate over Regions A, B and C .. 144

©International Monetary Fund. Not for Redistribution
11.4. Regional Expenditures, Prices and Volumes (Implicit Quantities) Using Mean Prices as the Regional Prices ...144
11.5. Overall House Price Indices using Mean Prices and Alternative Formulae to Aggregate over Regions A, B and C ...145
11.6. Log-linear Regression Results for a Simple Example ..146
11.7. Results from a Pooled Regression for Years 2006 and 2007148
11.8. Results from a Pooled Regression for Years 2006 to 2008148
11.9. Results from a Pooled Regression for Years 2007 and 2008149
11.10. Results from a Regression for 2006 ...150
11.11. Results from a Regression for 2007 ...150
11.13. Repeat Sales Data ...151
11.14. Dummy Variables for Repeat Sales ...152
11.15. Unweighted Repeat Sales Regression ..153
11.16. Weighted Repeat Sales Regression ...153
11.17. Repeat Sales Price Indices (2002 = 100) ...154
Foreword – RPPI

This Handbook on Residential Property Prices Indices (RPPIs) represents the first comprehensive overview of conceptual and practical issues related to the compilation of price indexes for residential properties.

The development of the RPPI Handbook has been co-ordinated by the Statistical Office of the European Union (Eurostat), under the joint responsibility of six organizations - International Labour Organization (ILO), International Monetary Fund (IMF), Organisation for Economic Co-operation and Development (OECD), Statistical Office of the European Union (Eurostat), United Nations Economic Commission for Europe (UNECE) and World Bank - through the mechanism of an Inter-Secretariat Working Group on Price Statistics (IWGPS). The Handbook is published jointly by these organizations.

The aim of the RPPI Handbook is to give practical guidance on the compilation of house price indexes and to increase international comparability of residential property price indexes. The Handbook outlines the different user needs, gives details on data needs and methods, and provides recommendations. The primary purpose of the Handbook is to assist producers of residential property price indexes, particularly in countries that are revising or setting up their RPPIs. The Handbook draws on a wide range of experience and expertise in an attempt to describe practical and suitable measurement methods. It should also help countries to produce their RPPIs in a more comparable manner. As it brings together a large body of knowledge on the subject, the Handbook may be used for self-learning, or as a teaching tool for training courses on residential property price indexes.

Other RPPI users, such as businesses, policy-makers or researchers may also find the Handbook useful as a source of information, not only about the different methods that are employed in collecting data and compiling such indexes, but also about their limitations. In this respect, it may facilitate the interpretation of the results.

The drafting and revision have entailed many meetings over a three-year period, in which RPPI experts from national statistical offices, international and regional organisations, universities and research institutes have participated. Their collective advice and wisdom were indispensable for the compilation of this Handbook. An electronic version of the Handbook is available on the Internet at http://epp.eurostat.ec.europa.eu. The IWGPS views the Handbook as a "living document" that will be amended and updated to address particular points in more detail.

Comments on the Handbook are welcomed by the IWGPS, and should be sent to Eurostat (e-mail: ESTAT-hicp-methods@ec.europa.eu). They will be taken into account in any future revisions.

Walter Radermacher
Chief Statistician of the European Union
Director General
Eurostat - Statistical Office of the European Union

Rafael Diez de Medina
Chief Statistician
Director of the Department of Statistics
International Labour Organisation

Alfredo M. Leone
Acting Director
Statistics Department
International Monetary Fund

Martine Durand
Chief Statistician
Director of Statistics Directorate
Organisation for Economic Co-operation and Development

Lidia Bratanova
Director of Statistical Division
United Nations Economic Commission for Europe

Shaida Badiee
Director, Development Data Group
World Bank
This page intentionally left blank
Preface

Introduction

The aim of this Handbook is to facilitate the setting-up of residential property price indices in countries where these are still missing and the improvement of existing price indices where this is deemed necessary. It is designed to give practical guidance on the compilation of house price indices, both in developed and less developed countries, and to increase international comparability of residential property price indices. It explains the different user needs, gives details on data and methods that can be used to compile residential property price indices and provides recommendations. The production of the Handbook was funded and supported by Eurostat.

Background

The need for property price indices that are fit-for-purpose was recognised at a conference organised jointly by the International Monetary Fund (IMF) and the Bank for International Settlements (BIS) in Washington DC, October 2003. As a result, a chapter on residential property price indices was added to the IMF’s “Compilation Guide of Financial Soundness Indicators”. The idea of a more detailed Handbook dates back to a workshop organised by the Organisation for Economic Co-operation and Development (OECD) and the IMF on Real Estate Price Indices in Paris, November 2006. The Handbook would complement the existing international manuals on consumer price indices, producer price indices and import-export price indices that were produced under the auspices of the Inter-Secretariat Working Group on Price Statistics.

Eurostat agreed to take this initiative forward by supporting and funding the preparation of the Handbook, given the strong links to its ongoing work on the inclusion of owner-occupied housing in the Harmonized Index of Consumer Prices (HICP) and the role that house price indices have in the set of “Principal European Economic Indicators”.

At the Eurostat-IASO-IFC conference on residential property price indices, held in Basel, 11-12 November 2009, the Handbook plan was discussed. Preliminary versions of the Handbook were presented and discussed at several occasions, in particular at the UNECE-ILO Meeting on Consumer Price Indices in Geneva, 10-12 May 2010, a workshop held in The Hague, 10-11 February 2011, and the twelfth Ottawa Group meeting in Wellington, 4-6 May 2011.

A Guide to Readers

Although not all of the chapters are self-contained, the Handbook is not designed to be read from cover to cover. For example, some of the chapters can easily be skipped by compilers who are particularly interested in methodological issues. Further details on the contents of the Handbook are given in Chapter 1.

The Handbook cannot be too prescriptive for two reasons. Firstly, it is not always possible to give practical guidance as some of the solutions to conceptual problems are not always clear-cut and there are choices to be made about precisely how a practical solution is implemented. Secondly, what is applicable and what can be achieved will depend on the data and resources available to the individual national statistical institute (or other compiling institute).

Acknowledgements

The writing of the Handbook was led by Statistics Netherlands; Bert M. Balk co-ordinated the project activities. Jan de Haan and W. Erwin Diewert acted as main editors. The authors of the individual chapters are as follows:

Preface Bert Balk, Jan de Haan and David Fenwick
1. Introduction Bert Balk
2. Uses of Residential Property Price Indices David Fenwick
3. Elements for a Conceptual Framework Erwin Diewert
4. Stratification or Mix Adjustment Methods Jan de Haan and Erwin Diewert
Preface

The quality of the Handbook was increased by the valuable contributions of many individuals and organisations, including input from both compilers and users of residential property price indices in different parts of the world. The number of contributors is, of course, too great to mention them all by name.

The BIS (and in particular Paul Van den Bergh) have been excellent hosts for the Basel workshop in 2009. Many thanks go to UNECE (and in particular Carsten Boldsen) who were also heavily involved in the organisation of the Basel workshop, and of the special session on the RPPI Handbook during the joint UNECE/ILO CPI meeting in 2010.

Special thanks are due to Irmtraud Beuerlein, Simon Coté, Lee Everts, Gregory Klump, Jose Vicente Romero, Patrick Sabourin, A.P. Saxena, and Chihiro Shimizu for contributing to the country-based case studies and to Emily Carless, Preechaya Chavalittumrony, Ali Hepşen, Marissa Gonzalez Guzman and Hector Zarate, who provided other background information on published indices. Useful comments on preliminary drafts of the Handbook were received from Carlos Brás, Morris Davis, Martin Eiglsperger, Timothy Erickson, Rui Evangelista, Dennis Fixler, John Greenlees, Brian Graf, Vanda Guerreiro, Ronald Johnson, Marcel van Kints, Andrew Leventis, Bogdan Marola, Daniel Santos, Mick Silver, Leo Sveidkauskas, Randall Verbrugge, David Wasshausen, and participants at the workshop in The Hague, in particular Marc Francke and Jan Walschots. Eurostat, the BIS, the IMF and the ECB also provided helpful comments. Thanks are also due to Rens Hendriks and Ning Huang for comments and computational assistance.
Introduction
1.1 Residential property is both a source of wealth and, insofar as property owners live in or on their property, an important determining factor in their cost of living. The price of a house is something different from the cost of dwelling services it provides, though the two concepts are obviously interlinked.

1.2 Monitoring the development of house prices is considered important, especially in times of economic turbulence. Yet the way house price development is measured varies per country, and even within a country there are sometimes two or more competing methods in use. This situation is of course not favourable for the design of consistent policy measures based on solid international comparisons.

1.3 Against this background it is understandable that it was proposed that a handbook be prepared on housing, or broader residential property, price indices. (1) The primary goals of the handbook are

- to provide guidance for those wishing to set up residential property price indices or modify existing indices in view of international harmonisation;
- to provide a discussion and comparison of the various targets and their corresponding conceptual frameworks;
- to provide an inventory of existing practices.

The contents of the handbook are briefly outlined below.

1.4 Chapter 2 reviews a number of areas where residential property price indices (RPPIs) play a role. The following applications are considered:

- as a macro-economic indicator of economic activity;
- for use in monetary policy and inflation targeting;
- as a tool for estimating the value of a component of real wealth;
- as a financial stability or soundness indicator to measure risk exposure;
- as a deflator in the National Accounts;
- as an input into citizens’ decision making on whether to buy or sell residential property;
- as an input into the Consumer Price Index; and
- for use in making inter-area and international comparisons.

1.5 In Chapter 3 on the uses of an RPPI, the focus will be to fill in gaps in the System of National Accounts and in the compilation of a Consumer Price Index. It is likely that if appropriate RPPIs can be constructed to fill in these gaps, then the resulting family of RPPIs will meet the needs of most users.

1.6 Broadly speaking, two separate types of RPPI can be distinguished: a constant quality price index for the stock of residential housing at a particular moment in time and a constant quality price index for residential property sales that took place during a particular period of time. The construction of these two types of index will be different; most particularly, the weighting associated with the two types will differ.

1.7 Chapter 3 continues by summarizing the four main approaches to constructing an RPPI. In the final sections a number of miscellaneous topics are addressed, such as the frequency of an RPPI, the consistency of monthly with quarterly estimates and the consistency of quarterly with annual estimates, revision policies, and seasonal adjustment.

1.8 Chapters 4-7 review in depth the main methods for compiling RPPIs. The simplest methods are based on some measure of central tendency of the distribution of transaction prices in a period, in particular the mean or the median. Since house price distributions are generally positively skewed (predominantly reflecting the heterogeneous nature of housing, the positive skew in income distributions, and the zero lower bound on transaction prices), the median rather than the mean is often used. As no data on housing characteristics are required to calculate the median, a price index that tracks changes in the price of the median house sold from one period to the next can be easily constructed. Another attraction of median indices is that they are easy to understand.

1.9 One major drawback of simple median based indices is that they provide very noisy estimates of price change. The set of houses actually traded in a period, or a sample thereof, is typically small and not necessarily representative of the total stock of houses. Changes in the mix of properties sold will therefore affect the sample median price more than the median price of the housing stock. A perhaps bigger problem than short-term noise is systematic error, or bias. A median index will be subject to bias when the quality of the housing stock changes over time. Bias can also arise if certain types of houses are sold more frequently than other types of houses and at the same time exhibit different price changes.

1.10 A general technique for reducing sample selection bias is (post-) stratification. This technique, which is also known as mix adjustment, is discussed in Chapter 4.

1.11 Chapter 5 reviews the hedonic regression approach. This approach recognizes that heterogeneous goods can be described by their attributes or characteristics. That is, each good is essentially a bundle of performance characteristics. In the housing context, this bundle may contain attributes of both the structure and the location of the properties. Although there is no market for

(1) Actually, this was one of the conclusions of the OECD-IMF Workshop on Real Estate Price Indices (Paris, 6-7 November 2006).
characteristics, since they cannot be sold separately, the demand and supply for the properties implicitly determine the characteristics’ marginal contributions to the prices of the properties. Regression techniques can be used to estimate those marginal contributions or implicit prices.

1.12 This chapter discusses, in a non-technical way, the main models used as well as the methods to form RPPIs from estimation of such models. The overall evaluation of the hedonic regression method is that it is probably the best method that could be used in order to construct constant quality RPPIs for various types of residential property. However, it is also the most data-intensive method.

1.13 The repeat sales method, reviewed in Chapter 6, utilizes information on the same properties which have been sold more than once. Because only “matched models” are used, there is no change in the quality mix to control for. In its basic form, the only information required is price, sales date and address of the property. So the repeat sales method is much less data-intensive than hedonic methods. Also, the repeat sales method will automatically control for micro location (address), something which hedonic methods are unable to do.

1.14 The matched model methodology, where prices of exactly the same item are compared over time, is the natural starting point for the construction of any price index. Because of the low incidence of transactions, and because the quality of houses continually changes, the standard matched model methodology cannot be applied straightforwardly. The repeat sales method attempts to deal with this issue by looking only at properties that have been sold more than once over a sample period. This, however, can lead to a relatively low number of observations and to sample selection bias. To overcome such problems, assessed values of the properties could be used.

1.15 In many countries, official government assessments are available for all properties, because such data are needed for taxation. If the assessments pertain to some reference date, an RPPI can be constructed by relating actual sale prices to assessed values. This constitutes a variant of the matched model methodology, the distinctive feature being that compositional change is accounted for. In this case, there is no need to use econometric techniques. The various assessment-based methods, and in particular the sale-price appraisal ratio (SPAR) method, are reviewed in Chapter 7.

1.16 Chapters 4-7 all end with empirical examples tested on actual data in order to illustrate the methods discussed and to provide additional background material. The data set covers 14 quarters of residential property sales for a relatively small town in the Netherlands. As will become clear in Chapters 4-7, most methods are unable to decompose an RPPI into a land and a structures component. Chapter 8 discusses how hedonic regression methods can be used to obtain such a decomposition and considers how to construct an RPPI for the stock of housing when hedonic regression methods are used. Using the actual data, this chapter also suggests ways to overcome several practical problems that are often encountered in empirical work of this nature, such as a high correlation between the size of the structure and the size of the land.

1.17 In practice, because of the high cost of undertaking purpose-designed surveys of house prices, the approaches adopted by statistical agencies and others to construct RPPIs have been mainly a function of the house price data sets generated by the legal and other processes associated with buying a house. The indices so constructed can vary according to the point in the house purchasing process at which the price is measured, for instance whether the final transaction price or the earlier valuation used for securing a loan is taken. Also, the amount of detailed information available on the characteristics of the properties sold will affect index compilation methods, often acting as a constraint on the techniques available to quality adjust for houses of different sizes and locations. Thus, data availability has historically been a constraint on the approach used for index construction.

1.18 Chapter 9 qualitatively examines the different data sources that can be used for constructing RPPIs, such as printed news media, real estate agents, mortgage companies, property registers and tax offices. In the final section, attention is paid to the situation in many developing countries where data are scarce and the issue of property ownership is ambiguous.

1.19 Chapter 10 catalogues the availability of RPPIs in different countries and also presents some case studies. It relies on meta-data gathered by various organisations, including the European Central Bank and the Bank for International Settlements, and more recently a fact-finding exercise conducted by Eurostat in connection with the inclusion of owner-occupied housing costs in the European Union’s Harmonised Index of Consumer Prices, which was extended to cover some non-EU countries.

1.20 Chapter 11 provides additional practical guidance by demonstrating the working of the RPPI construction methods (excluding the SPAR method) that were outlined in Chapters 4, 5 and 6 on simple examples using small data sets.

1.21 Chapter 12 concludes by providing recommendations.
Introduction

2.1 There are many areas of society where individuals or organisations use residential property price indices (RPPIs) directly or indirectly either to influence practical decision making or to inform the formulation and conduct of economic policy. Different uses can have a significant impact on the preferred coverage of the index and also on the appropriate methodology applied for its construction.

2.2 From an individual household’s perspective, real estate often represents the single largest investment in their portfolio. It also accounts for the largest share of wealth in most nations’ balance sheets. Changes in house prices can have far-reaching implications for individuals. For example, changes in housing equity and household debt levels can permeate through to the overall economy. In fact, consumer spending is often affected by changes in house prices as a result of wealth effects and its effect on consumer confidence. House prices influence home improvement and renovations expenditures, which in many countries are higher than overall spending on new house construction. House prices play a major role in the measurement of the affordability of home-ownership, a key housing policy objective in some countries. House price changes also influence the decision to build new houses (the supply side) as well as the decision to become a homeowner (the demand side). Investors turn to house price indices to not only measure wealth but also to help in assessing current and future rates of return.

2.3 From a broader perspective, analysts, policymakers, and financial institutions follow trends in house prices to expand their understanding of real estate and credit market conditions as well as to monitor the impact on economic activity, and financial stability and soundness. For instance, mortgage lenders will use information on house price inflation to gauge default risk. Central banks often rely on movements in house price indices to monitor households’ borrowing capacity and debt burden and their effects on aggregate consumption.

2.4 In this context it should be emphasised that the different uses of residential property price indices may require different conceptual bases and methodology, although in practice, other factors sometimes come into play, such as data availability. In general, no single indicator of house price change can satisfy every purpose. For instance, the price dynamics of the housing market for monitoring house inflation, as experienced by purchasers, may best be estimated by collecting information on current transaction prices and using this information to construct a price index for the sales of housing units. In contrast, to estimate an economy’s (real) stock of wealth, information on the sample of transacted dwellings must ideally be supplemented by information on the stock of non-transacted dwellings in order to construct a price index for the housing stock. This may be done by re-weighting to reflect the different mix of houses in the housing stock compared with transactions but the adequacy of this method depends on whether the dwellings that are actually transacted can act as a proxy for the ones that have not been subject to a change of ownership. If the price of houses that have not changed ownership is not available and information on their numbers and characteristics is limited or even non-existent, the user needs to be assured that the profile of the transactions is representative of the overall housing stock. In practice, the latter condition may not be fully met as different sectors of the housing market can be influenced by different factors and the limited number of transactions may lead to unreliable or even non-existent data on prices for some of these different strata.

2.5 The (price determining) attributes of individual houses often change over time. These changes include improvements to the dwelling in the form of renovations to kitchens and bathrooms, replacement windows with insulated glazing, or the installation of energy efficient heating or air-conditioning systems, and also extensions of the structure which reflect the recent trend in many countries towards larger houses. Improvements and extensions will be partially offset by depreciation of the structures. Irrespective of the purpose of the index, an ideal RPPI should be adjusted for all of those changes. To put it differently, the index should represent changes in the prices of properties that are comparable in quality over time.

2.6 The need for quality adjustment extends beyond controlling for home improvements and depreciation, however. The mix of dwellings that are sold in one period is likely to be different from that in the next period when, say, the sample of houses sold consists of more larger houses compared to the previous period. Such compositional or mix changes may have a cyclical pattern because sales of larger houses will typically decline as an economy enters a recession. Compositional changes of the sample over time, just like quality changes of the individual dwellings, should not be interpreted as price changes – measurement techniques are required to adjust the price changes for quality mix changes. A short overview of the various methods that are available to solve the problems of quality (mix) change will be provided in Chapter 3. A detailed discussion of these methods will follow in Chapters 4-7.
A Review of the Different Uses of Residential Property Price Indices

2.7 Residential property price indices have a number of important uses:
- as a macro-economic indicator of economic growth;
- for use in monetary policy and inflation targeting;
- as an input into estimating the value of housing as a component of wealth;
- as a financial stability or soundness indicator to measure risk exposure;
- as a deflator in the national accounts;
- as an input into an individual citizen’s decision making on whether to buy (or sell) a residential property;
- as an input into the consumer price index, which in turn is used for wage bargaining and indexation purposes; if used for wage bargaining, the index is an input into an individual citizen’s decision making on whether to buy (or sell) a residential property;
- for use in making inter-area and international comparisons.

Each use is considered in turn.

As a Macro-Economic Indicator of Economic Growth

2.8 Rising house prices are often associated with periods of economic expansion while falling house prices often correspond with a slowing economy. Goodhart and Hofmann (2006) show that for 16 industrialised countries there exists a strong correlation between house prices and economic activity. In fact the six major banking crises in advanced countries since the mid 1970s were all associated with the bursting of a housing bubble (Reinhart and Rogoff, 2009). In the main, house prices are treated as a leading indicator although there is some debate about whether house price change is a leading, lagging or coincident economic indicator.

2.9 What is clear is that rising house prices are often associated with economic growth through at least three channels:
- Higher (relative) house prices tend to stimulate increased construction activity, which in turn leads to higher
- employment and higher incomes for a wide range of workers involved in the housing market, such as real estate agents, construction workers and professionals in the financial and the legal professions. Expectations of higher future returns on property investment lead builders to start new construction and this is accompanied by higher market demand in property-related sectors from owner-occupiers and property investors. In addition, building activity will tend to increase from more home renovations.
- Higher house prices tend to lead to increased sales of existing housing units and this in turn can lead to additional tax revenues in the form of property transfer taxes generated from the higher volume and value of property sales. These increased tax revenues can lead to increased government spending which in turn provides additional economic stimulus.
- Rising real estate prices will lead to improvements in the household sector’s balance sheet (the wealth effect) and this in turn will generally lead to increased household spending on consumption and investment. According to a report by the U.S. Congressional Budget Office (2007), when house prices surged in the 1990s and 2000s, consumer spending grew faster than incomes. This household wealth effect generally leads to increases in spending by consumers on home renovations and repairs in addition to increased spending on other goods and services.

2.10 Of course, the above stimulative effects of increasing house prices go into reverse when (real) house prices fall. It is therefore important that the public and economic policy makers have at their disposal accurate and timely information on movements in real estate prices.

2.11 Asset prices, including real estate prices, are a key indicator for more fully understanding the dynamics of the economy. According to Plosser (2007), asset prices contain important information about the current and future state of the economy and can play an important role in the deliberations of central bankers as they seek to achieve their objectives of price stability and sustainable output growth.

For Use in Monetary Policy and Inflation Targeting

2.12 In addition to the above general interest in monitoring property prices, many central banks have inflation targets which can directly involve indices of property prices. For instance, central banks in some countries utilize a Monetary Conditions Index (MCI) as a day-to-day

©International Monetary Fund. Not for Redistribution
operating target for the conduct of monetary policy. In an expanded version of this index, as that suggested by Jarociński and Smets (2008) and Goodhart and Hofmann (2007), the MCI would include some measure of house prices because of the important role this variable plays in the inflationary process and for economic performance. Other central banks who have an inflation target based on the Consumer Price Index (CPI) will indirectly take into account the movement in house prices when setting interest rates, depending in part on the treatment of Owner Occupied Housing (OOH) in their country’s CPI. This issue is discussed further in Chapter 3.

2.13 It can be argued that in the future, residential property prices are likely to play an increasing role in the conduct of monetary policy. Over recent years an inflation target has been used by a growing number of countries to define and operate their monetary policy frameworks. The IMF (2007) provides a list of 28 countries classified as inflation “targeters” according to their “exchange rate arrangements” (without specifying the target or inflation measure). Carare and Stone (2003) extend this analysis further by classifying countries that use an inflation target for monetary policy, into fully-fledged inflation “targeters”, eclectic “targeters” and inflation targeting lite regimes, using the clarity and credibility (\(^{(1)}\)) of the commitment to the inflation target to classify individual countries. The authors then identify 42 medium and large country central banks who have some form of floating exchange rate mechanism (i.e. not adopting a fixed exchange rate) leaving their degree of commitment to an inflation target as the defining monetary objective. They estimated that by 2001 some 7 industrial and 11 emerging markets operated fully-fledged inflation targeting, that is “have a medium to high level of credibility, clearly commit to their inflation target and institutionalize this commitment in the form of a transparent monetary framework that fosters accountability of the central bank to the target”. The number of countries operating fully-fledged inflation targeting has been increasing over the years.

2.14 House prices are an input into the measurement of aggregate wealth in the economy. Existing dwelling units are part of the balance sheet accounts in the System of National Accounts (SNA). Thus it is necessary to have a price index for this asset class in order to form estimates of real household wealth. As was mentioned in the introduction to this chapter, rising house prices will generate a wealth effect that can lead to increases in consumption and increased household borrowing.

2.15 More generally, individuals will have an indirect stake in real estate asset prices, including residential property, through pension funds and other direct investments in real estate.

As a Financial Stability or Soundness Indicator to Measure Risk Exposure

2.16 Financial Soundness Indicators (FSIs) are indicators of the current health and soundness of the financial system and institutions of a country and of their corporate and household components. They include both aggregated individual institution data and indicators that are representative of the markets in which the financial institutions operate, including statistics on real estate prices. FSIs are calculated and disseminated for the purpose of supporting national and international surveillance of financial systems. The IMF developed FSIs with a view to monitoring and strengthening the global financial system and to increasing stability following the financial market crises of the late 1990s, and as a way of combating the subsequent growing number of banking crises that have occurred globally. The compilation guide for financial soundness indicators provides some advice on compiling house price indices whilst acknowledging the relative absence of international experience and guidance and the absence of a comprehensive framework for constructing such indices. More recently, the October 2009 Report to the G-20 Finance Ministers and Central Bank Governors on the Financial Crisis and Information Gaps (\(^{(1)}\)) mentions that information on dwellings and their associated price changes are critical ingredients for financial stability policy analysis.

2.17 Sharp falls in real estate prices have a detrimental impact on the health and soundness of the financial sector and on the financial situation of individuals and of individual households, by affecting credit ratings, the value of collateral, and the debt to equity ratio.

2.18 It should come as no surprise that the relationship between real estate cycles and economic cycles is well documented and that the role of real estate prices in debt finance and financial crises has long been recognised. This has led to the use of residential property price indices as indicators of financial stability, particularly in countries where real estate accounts for a significant proportion of national and household wealth, and where the propensity of home ownership is relatively high.

2.19 The use of trends in residential property prices, and real estate prices more generally, as an indicator of financial soundness, has been supported by in-depth analytical

\(^{(1)}\) Clarity is gauged by the public announcement of the inflation target and by the institutional arrangements for accountability. Credibility is measured indirectly using as a proxy the actual inflation outcome and by market ratings of long-term local currency government debt.

studies. Included amongst the vast amount of material published on this subject is a paper by Nabarro and Key (2003) who present a model for real estate and lending cycles, supported by case studies. Their paper traces the cyclical evolution from initial indicators provided by the rental market, to property prices and through to balance sheets of borrowers and lenders, and draws attention to a number of relevant indicators of the real estate market. It describes what the authors call “the dangerous interdependence between real estate cycles and financial systems”. Whilst the authors acknowledge the highly unpredictable nature of the real estate cycle and its different characteristics and properties from one cycle to the next, they discuss the linkages between real estate cycles and debt finance to identify areas where improved information could support effective counteracting strategies and policies. They explain how a reliable and cost-effective system of performance measurement and monitoring can be developed and implemented and suggest how such a system can provide a mechanism for analytical decision making, designed to impact upon the behaviour of the real estate sector.

2.20 Information on residential property and other property prices needs to be supplemented by relevant and timely detailed analyses, and by other information such as the proportion of houses being purchased with cash rather than being financed through a loan. The average ratio of loan to property price, and how this is distributed, provides an indication of the exposure of the borrower and the lender, as does the price to earnings ratio and, to a certain extent, the volume of transactions. (14) Similarly, a more detailed analysis of the types of houses being sold by region will show whether activity in the housing market is concentrated in particular segments of the market such as high-end properties or in certain geographical locations such as the capital city or large urban areas.

As a Deflator in the National Accounts

2.21 National statistical agencies use house price indices in at least two ways. First, the structures component of a price index for newly-built houses is often used to deflate current price values for residential construction in the national accounts; see Bover and Izquierdo (2003). Second, house price indices may be included in the construction of the CPI, depending on the choice of its conceptual basis. This second use is considered below and in more detail in Chapter 3.

2.22 Price indices and deflators are seemingly different entities within a wider group of statistics relating to prices. (15) It is pertinent to note against this background that two of the most recent and widely available references on the compilation and use of national accounts deflators, SNA (1993) and the Eurostat (2001) Handbook on Price and Volume Measures in National Accounts, pre-date the CPI Manual (2004) and PPI Manual (2004).

2.23 The CPI and PPI Manuals were developed in parallel and take advantage of the latest research into index number theory and practice, which is not fully reflected in the official literature on national accounts. (16) The two manuals are essentially based on the same underlying economic principles and statistical theory. They provide a comprehensive and coherent overview of the conceptual and theoretical issues associated with consumer and producer price indices and translate these into available options for practical measurement. The CPI Manual also acted as a catalyst for the new ILO Resolution on Consumer Price Indices, which was passed in 2003.

As an Input into an Individual Citizen’s Decision Making on Whether to Buy (or Sell) a Residential Property

2.24 The buying or selling of a dwelling is typically the largest financial transaction a household will enter into during his or her life. Changes in house prices are therefore likely to influence substantially whether a household purchases a property and also the budget plans and savings decisions of the prospective house buyers and sellers. The purchase of a house is considered by many owner-occupiers both as a means of obtaining shelter services and as a capital investment, the latter potentially providing an opportunity for significant capital gains in the longer-term. Current price levels and trends, together with expectations about future trends in house prices and mortgage interest rates, (17) will influence an individual’s decision on whether to purchase now or postpone the purchase. The opportunity cost associated with the sums of money involved will also come into play as prospective purchasers evaluate the alternative choices available to them. For instance, prospective purchasers will often take into account the impact of changes in house prices on market rents.

2.25 More generally, individuals also have an indirect stake in real estate asset prices through pension funds and other investments for which house prices will likely have an effect. For instance, the portfolios of some pension funds include apartment blocks whose rents provide an

(15) The two manuals are essentially based on the same underlying economic principles and statistical theory. They provide a comprehensive and coherent overview of the conceptual and theoretical issues associated with consumer and producer price indices and translate these into available options for practical measurement. The CPI Manual also acted as a catalyst for the new ILO Resolution on Consumer Price Indices, which was passed in 2003.

Uses of Residential Property Price Indices

income and where a capital gain is expected to materialise from an increase in the property value.

As an Input into the Construction of a Consumer Price Index (CPI)

2.26 House prices will directly affect measured inflation when the CPI includes owner-occupier housing costs and the method of measurement draws on house prices as one of the inputs. Measured inflation is indirectly affected if house prices influence market rents, which constitute another element of a CPI, and where additionally imputed rents are used as a proxy for owner-occupied housing costs. Renting and buying can be substitutes and the level of house prices will have an impact on the rate of return obtained by a landlord on his or her investment and also on the rent charged.

2.27 The treatment of Owner Occupied Housing (OOH) is one of the most difficult challenges faced by compilers of consumer price indices. There are a number of alternative conceptual treatments and the choice between them can have a significant impact on the overall index, affecting both the weight attributed to OOH (and by implication to an RPPI) and the measured rate of inflation. In essence there are four possible main approaches to including OOH in a CPI: the acquisitions approach, the payments or money outlays approach, the user cost approach and the rental equivalence approach. The first three approaches require the construction of a housing price index. These various approaches to the treatment of OOH are reviewed in more detail in Chapter 3.

For Use in Making International and Inter-area Comparisons

2.28 House price indices are also used in conjunction with (comparable) benchmark data on house price levels across regions or countries to generate inter-area or international comparisons of living cost differentials. The problems that arise in attempting to price the services of OOH in a national context also arise in the context of inter-area and international comparisons. In the latter context, however, the problems are somewhat more difficult than making, say, national comparisons over time because inter-area/international comparisons require comparable types of housing across the regions/countries being compared (or comparable information on the characteristics of housing units across the regions if a hedonic regression technique is used) in order to construct a constant quality price index.

2.29 The European Central Bank (ECB) – in co-operation with the central banks of the individual countries of the euro-zone and the European Union – has an interest in comparative measurement of changes in residential property prices across different euro-area countries and for the euro-area as a whole. The raw data used here come from various national sources and have primarily been collected and documented by the Bank for International Settlements (BIS). (18) Since 2001, the ECB has compiled an aggregate index for the euro-area by weighting together changes in prices for houses and flats for the euro-area countries. (19) The national methodologies associated with the figures available for each individual country and for the euro-area aggregate, have improved over recent years but perhaps fall short of the standards applied to other economic statistics and price indicators for the euro-area. (20) The BIS has also brought together residential property price statistics for the non-euro area countries of the European Union and has in many cases been confronted with even more pronounced issues concerning data comparability and quality.

2.30 Such comparisons can be confounded by methodological and coverage differences and also by differences in the frequency and timeliness of the data. Some of these differences arise from the different sources of data used to compile national indices. Chapter 9 explores these data sources in more detail and Chapter 10 gives an inventory of the different methods used by countries to compile their indices of residential property prices. It can be observed that a notable proportion of countries, including some developed countries, do not have reliable residential property price indices.

(20) See Eiglsperger (2010), page 233.
Elements for a Conceptual Framework
Introduction

3.1 What makes the construction of a residential property price index (RPPI) so challenging? This question was addressed in Chapter 1 of this Handbook but it will be useful to remind readers about the main problems, which are as follows:

- The compilation of price indices typically relies on matching the prices for identical items over time. However, in the housing context, each property has a unique location and usually a unique set of structural characteristics. Thus, the matched model methodology will be difficult or impossible to apply.
- Transactions are sporadic.
- The desired index number concept may not be clear, or put another way, there are several distinct purposes for which an RPPI is required and, broadly speaking, different purposes require different indices.
- For some purposes, notably the construction of national balance sheets and the estimation of user costs of owner occupied housing, a decomposition of a property price into land and structures components is required but it is unclear how best to accomplish such a decomposition. This issue will be discussed in more detail in Chapter 8 below.

3.2 The first two difficulties are well recognized in the housing measurement literature as the following quotations indicate:

“The price of housing is harder to measure than that of most other goods and assets because of three key distinguishing characteristics. First, and most importantly, dwellings are heterogeneous. No two dwellings are identical, if only because they cannot occupy quite the same location. This means that sampled house prices may be a poor indicator of all house prices because we cannot always reliably predict the sales price of a given dwelling from the price of another.” Robert Wood (2005; 213).

“The fundamental problem that price statisticians face when attempting to construct a real estate price index is that exact matching of properties over time is not possible for two reasons: (i) the property depreciates over time (the depreciation problem) and (ii) the property may have had major repairs, additions or remodeling done to it between the two time periods under consideration (the renovations problem). Because of the above two problems, constructing constant quality real estate price indices cannot be a straightforward matter; some form of imputation or indirect estimation will be required.” Erwin Diewert (2009b; 92).

Such statements indicate that the construction of an RPPI will be much more difficult than the construction of a “normal” price index based on a matched model methodology. It should be recognized at the outset that, because of the difficulties resulting from the uniqueness of each dwelling unit, it would not be possible to construct a “perfect” RPPI; it will only be possible to construct an approximation to the theoretically ideal index for each purpose.

3.3 The question of what is the purpose of an RPPI has been addressed in Chapter 2, where the many uses of an RPPI were considered. This chapter focuses on the uses of RPPIs to fill in gaps in the System of National Accounts and in the construction of a CPI. It is likely that if appropriate RPPIs can be constructed to fill in these gaps, then the resulting family of RPPIs will meet the needs of most users.

3.4 Broadly speaking, two separate RPPIs can be distinguished: 1) a constant quality price index for the stock of residential housing at a particular moment in time; and 2) a constant quality price index for residential property sales that took place during a particular period of time. The construction of these two types of index will be different; e.g., the weighting associated with the two types will differ. In this chapter, the main approaches to constructing an RPPI will be briefly discussed. Details on these methods will be presented in Chapters 4 to 7.

3.5 A variety of miscellaneous topics will be addressed in the final four sections of this chapter. These topics include the frequency of the RPPI and user needs, the consistency of monthly with quarterly estimates and the consistency of quarterly with annual estimates, revision policies, and seasonal adjustment.

Residential Property Price Indices and the System of National Accounts

3.6 The System of National Accounts (SNA) 1993 and its recent updating, the System of National Accounts 2008,(1) provide a comprehensive accounting framework for an economy. The SNA partitions the value flows in the economy into various meaningful categories and provides a reconciliation of the flow accounts with the corresponding stock accounts. It is furthermore recommended to decompose the values in the cells of these accounts into price and volume (or quantity) components.

3.7 There are three passages in the SNA where residential property price indices are required to convert nominal values into volumes or real values:

- the stock of residential properties that exist at a particular location in the country at a particular point in time;
- the sales of residential properties that were sold in a particular location in the country over a particular time period, and
- the structures part of the sales of new residential properties that were sold in a particular location in the country over a particular time period.

3.8 A country’s stock of residential properties is a component of its national wealth. Hence, a price index is required for residential properties so that balance sheet estimates of real wealth by component can be formed. Balance sheet estimates of national wealth typically distinguish between the structures component of residential property and the land component. If there is a need to provide estimates of the country’s real stock of residential structures and the real stock of residential land, it will be necessary to decompose residential property values into separate land and structures components and to construct price indices for each of these components.

3.9 It may not be immediately obvious why a price index for the sales of residential properties is required for national income accounting purposes. It is used to estimate the real output of the residential real estate services industry, i.e., the industry that provides services that facilitate residential properties transactions. Some algebra will help understand why having a price index for the sales of residential properties is essential in this area.

3.10 Suppose that the value of real estate agent commissions is V_t^c, for some class of property transactions in period t and suppose that the corresponding value of sales for the same group of properties (including the commissions) is V_t^s. Further, suppose that a constant quality price index for this type of sale has been constructed and the period t value of this price index is P_t^s. An estimate of volume of sales for this class of real estate transactions in period t, say Q_t^s, can be calculated with the following relationship:

$$Q_t^s = V_t^s / P_t^s$$ \hspace{1cm} (3.1)

3.11 The real estate industry can be treated as a retailing or wholesaling industry; i.e., it is a margin industry that can be thought of as buying a property at the pre-commission price and selling it at the post-commission price. The value of the service is equal to the commission revenue, V_t^c, and the quantity of the service is proportional to the volume of the sales, Q_t^s. Thus set the volume of the real estate services, Q_t^s, equal to Q_t^s:

$$Q_t^s = Q_t^s$$ \hspace{1cm} (3.2)

3.12 Finally, the price index in period t for the subsector of the real estate industry associated with the property sales, with value V_t^c in period t, is set equal to the value of the corresponding commissions, V_t^c, divided by the corresponding volume, Q_t^s:

$$P_t^c = V_t^c / Q_t^s$$ \hspace{1cm} (3.3)

$$= V_t^c ([V_t^s / P_t^s])$$

$$= [V_t^c / V_t^s] P_t^c$$

$$= m_t P_t^s$$

where $m_t = V_t^c / V_t^s$ is the period t margin rate for this class of real estate transactions; i.e., m_t is the ratio of commissions in period t to the corresponding purchaser’s total value of the real estate transactions. Thus the period t price index for the output of this segment of the real estate industry is the product of the margin rate m_t times the constant quality price index for the properties sold in period t, P_t^s. This demonstration illustrates why constant quality price indices for sales of residential properties are useful for national income accounting purposes.

3.13 The third value cell in the national accounts that requires a housing price deflator is the value of new housing produced in various locations in the country over a reference time period. This value flow is part of gross capital formation in the country. When a new property is produced in the reference period and if there were no improvements made to the underlying land that the new structure occupies, then the portion of the sale price that can be attributed to the site land should be deducted from the sale price and the residual amount is then part of gross capital formation and also part of the construction industry’s output. Thus, an RPPI for the structure component of the sales of new residential properties is required in the national accounts. It will be necessary to decompose sales of new residential properties into separate land and structure components and to construct a constant quality price index for the structure component in order to serve the needs of the national accounts.

3.14 Recall the above discussion about modeling the output of the real estate industry. Because the sale of a new property will have various transactions costs associated with it (e.g., real estate commissions), this leads to some
complexities in the system of national accounts that have not yet been definitively resolved. From the viewpoint of the construction industry, these transactions costs are not part of the revenues that accrue to the construction sector, so these costs should not be included in the value of the output of the construction industry. However, from the viewpoint of the sector that purchases the new housing unit, these transactions costs are a real cost and they must be accounted for. There are a number of ways that transactions costs associated with the purchase of a new housing unit could be treated (from the viewpoint of the purchaser):

- simply attribute all of the costs to the period of purchase and treat the transactions costs as an expenditure by the purchaser (4) (which is an acquisitions approach to these costs);
- include transactions costs as part of the structures component of the value of the purchase so that these costs would be amortized over time using the same depreciation rate that was being used to depreciate the structure; or
- separately amortize the transactions costs according to the average length of time a residential property of the type under consideration is being held before it is resold.

Conceptually, the last treatment seems preferable (5) but the first and second treatments will lead to a simpler set of accounts. These issues need to be studied further by national accountants with input from the broader economics community.

Residential Property Price Indices and the Consumer Price Index

3.15 Pricing the services of Owner Occupied Housing (OOH) in a Consumer Price Index (CPI) is extensively dealt with in the Consumer Price Index Manual. (6) There is no universal consensus on the treatment of OOH in a CPI but the CPI manual suggests four possible approaches. (7) These approaches treat the unique character of OOH, which involves both the acquisition of a house and the consumption over time of the flow of services of the house, in a different manner.

- The money outlays or payments approach. In this approach, the out of pocket expenses of home ownership are simply added up. These costs include expenditures on maintenance and repair, mortgage interest costs, insurance premiums, property taxes and condominium charges (if the housing unit is a condominium). Two important types of implicit cost and one important implicit benefit of home ownership are not included. The two omitted costs are depreciation and the opportunity cost of the funds that are tied up in the homeowner’s equity in the house; the implicit omitted benefit is the capital gains that may accrue to the owner during the time period under consideration. (8) The money outlays approach is useful if an analyst wishes to focus on the disposable income of households. However, it is not particularly useful as a measure of household consumption services (because of the omission of the costs and benefits mentioned above).

- The (net) acquisitions approach. (9) In this approach, the services of OOH are ignored in the CPI except when a new housing unit is introduced into the market place. The purchase price of the new dwelling unit is charged to the period of purchase so that a purchase of a new house is treated in the same manner as the purchase of a nondurable good or service, i.e. the purchase is treated in the same way as the purchase of other durable goods. A variant of this approach is to decompose the selling price of the newly built residential property into land and structures components and to use just the structures component as the price which will enter into the CPI.

- The rental equivalence approach. In this approach, a price is imputed for the shelter cost of the owner occupied housing unit (both for new and existing units), which is equal to the price at which the unit could be rented. (10)

- The user cost approach. In this approach, the financial opportunity cost of owning the house and using its services during the reference period is calculated.

(1) The index price that could be used to convert the nominal value of transaction charges into a real amount (or volume) is a composite purchase price index for the type of property under consideration which includes both the land and structures components.

(2) This is the treatment used by the Australian Bureau of Statistics. An unresolved issue is the choice of price deflator in order to form real amortization charges. That is, should a structures price index be used or should a composite structures and land price be used? In the case of real estate the commissions are generally proportional to the overall price of the property (the sum of the land and structures components) so it would be appropriate to use a composite property price index for the deflation of this component of transactions costs. Government transactions taxes or stamp duties may impose different rates on the land and structures components of the sale and so working out an appropriate real price for this component of transactions costs may be rather complicated. Again, it may be acceptable to avoid all of these complexities and just use a composite purchase price index to do the deflation.

(3) See ILO, IMF, OECD, Eurostat, UN and World Bank (2006), Chapter 23.

(4) The money outlay concept is explained in some detail in Baldwin, Nakamura and Prud’homme (2009).

(5) The money outlays concept is particularly useful as a measure of household consumption services (because of the omission of the costs and benefits mentioned above).

(6) The money outlay concept is particularly useful as a measure of household consumption services (because of the omission of the costs and benefits mentioned above).

(7) For a comprehensive practical treatment of the net acquisitions approach, see Eurostat’s (2012) Technical Manual on Owner Occupied Housing.

(8) This approach is consistent with the treatment of OOH in National Accounts: In the SNA, OOH is considered a fixed asset, unlike other durables (such as washing machines, furniture, cars etc). The purchase of a house is considered an investment and included in gross fixed capital formation and thus excluded from household final consumption expenditure; the same goes for extensions of the house and major repairs. However, the ownership of a house provides a service which is consumed over time by the owner and the value of this service is included in household final consumption expenditure.

©International Monetary Fund. Not for Redistribution
3.16 The conceptual differences between these approaches should be underlined. The rental equivalence approach and the user cost approach price the services of an owner occupied dwelling. The payments approach measures the out of pocket expenses of home ownership. The net acquisitions approach takes a completely different perspective, implicitly allocating all the services of the newly purchased dwelling to the period of purchase.

3.17 In the above approaches except the payments and rental equivalence approaches, there is a need for constant quality price indices for either newly-built dwelling units or for the existing stock of dwelling units. The user cost and opportunity cost approaches to pricing the services of a residential housing unit are not entirely straightforward. The Appendix to this chapter outlines the mechanics of these approaches.

3.18 To summarize, RPPIs are needed in the construction of a CPI and to deflate several value flows and stock holdings in the national accounts. For both CPI and national accounts purposes, it will be useful or necessary to have a decomposition of the price indices into structures and land components. More specifically, it would be useful to be able to construct the following set of RPPIs:\(^{(1)}\)

- a price index for the total stock of residential housing at a particular moment in time, which is needed for estimating real changes of the economy’s stock of residential housing, a component of a nation’s real wealth;
- a price index for the owner occupied stock of residential housing (a subindex of the index in the bullet point above), which is needed to construct estimates for the value of OOH services based on user cost or opportunity cost principles;
- a price index for residential property sales (both newly-built and existing dwelling units) that took place during a given period of time, which is needed for estimating the real output of the residential real estate services sector;
- a price index for the sales of newly-built residential properties during a given period of time, which is required if a broadly defined net acquisitions approach is used where both the structures and land components would be included in the purchase;
- a price index for the structures component of newly-built residential properties that were sold during a given period of time, which is needed for a narrowly defined net acquisitions approach where only the structures component would be included in the purchase.

Main Methods

3.19 To measure pure price change, real estate prices must be adjusted for quality change. In other words, to compile a constant quality RPPI, it will be necessary to somehow control for any variations in the amounts of the price determining characteristics of the properties. The most important characteristics are:

- the area of the structure (in squared feet or in meters squared);
- the area of the land that the structure sits on (in squared feet or meters squared);
- the location of the property;
- the age of the structure;
- the type of structure; the structure can sit entirely in the lot without sharing any walls with an adjacent structure (detached dwelling unit) or share one wall with a neighbouring unit (semi-detached dwelling unit), or the dwelling unit can be a single apartment or unit in a multifamily residence (apartment or condominium building);
- the materials used in the construction of the house (primarily wood, brick, concrete or traditional materials; i.e., a shack or shanty), and
- other price determining characteristics such as the number of bedrooms, the number of bathrooms, a garage, a swimming pool, air conditioning, distance to amenities, etc.

3.20 Four main methods have been suggested in the literature to control for changes in the amounts of the property characteristics: stratification or mix adjustment, repeat sales methods, hedonic regression methods, and the use of property assessment information. Below, a brief overview of the four methods is provided. More details can be found in Chapters 4-7.

3.21 Stratification of transactions according to some of the price determining characteristics is a straightforward and computational simple way to adjust for changes in the quality mix of the samples in different time periods. By defining a number of reasonably homogeneous strata or cells, the average selling price within each cell can be used as a (proxy to a) constant quality price for that type of property. Regular index number theory can then be applied to aggregate up the average prices by cell into an overall index. Such stratification methods are also known as mix adjustment.

(1) See Diewert (2009a), Diewert and Nakamura (2009) and Diewert, Nakamura and Nakamura (2009).

(2) Fenwick (2005) (2006) argued that it would be useful to develop a coherent conceptual framework for a family of real estate price indexes. It can be seen that user needs will vary and that in some instances, more than one measure of house price or real estate inflation may be required. It can also be seen that coherence between different measures and with other economic statistics is important and that achieving this will be especially difficult as statisticians are unlikely to have an ideal set of price indicators available to them.” David Fenwick (2005, 8)
methods. Wood (2005) describes this method in the following way:

"House price observations are grouped into sets or 'cells' of observations on houses with similar location and physical attributes. [...] The mean prices in each cell are weighted together to give a 'mix adjusted' price. A change in the composition of the sample will alter the number of observations in each cell. But if the cells are defined sufficiently precisely, so that all elements of the cell have similar prices and price trends, then such compositional changes will not systematically affect the mix adjusted house price. Robert Wood (2005; 214).

3.22 The repeat sales method addresses the quality mix problem by comparing properties that have sold more than once over the sample period. Restricting the comparison to units that have sold repeatedly ensures that the price relatives compare like with like, provided that the quality of the houses remained unchanged. The standard repeat sales method is based on a regression model where the repeat sales data pertaining to all periods are pooled. A potential drawback of this approach is the issue of "revisions": when new periods are added to the sample and the model is re-estimated, the previously estimated price indices will change. An advantage of repeat sales methods is that, because properties are matched at the address level, location, an important factor affecting real estate prices, is held constant.

3.23 One other potential drawback of the repeat sales method is that it does not account for quality changes of the sampled houses; over time a dwelling unit can undergo renovations and be subject to depreciation. Consequently, the quality of the property can vary with time. Hedonic regression methods can in principle adjust for such quality changes in addition to changes in the quality mix of the samples. These methods utilize information on the relevant property characteristics to estimate quality adjusted price indices using regression techniques, though it may prove difficult to sufficiently control for location. There are different ways to estimate hedonic price indices. The time dummy variable method has been prominent in the real estate literature. This method models the price of a property as a function of its characteristics and a set of time dummy variables. Because the data for all periods are pooled, the resulting indices are subject to revisions like with the repeat sales method. Another drawback of the time dummy method is that it places perhaps unwarranted restrictions on variations in the price of land and structures across time. These difficulties with the time dummy variant of the hedonic regression approach can be avoided by using another variant of the method known as the hedonic imputation method.

3.24 Many countries tax real estate property and are likely to have an official property valuation office that provides periodic appraisals of all taxable real estate properties. Assessment-based methods combine selling prices with appraisals to compute price relatives (sale price appraisal ratios) and control for quality mix changes. The Sale Price Appraisal Ratio (SPAR) method is based on the matched model methodology. In contrast to the repeat sales method, it relies on all (single and repeat) sales data, and there is no revision of previously estimated indices. Of course the method can only be applied in countries where reliable assessed values of the properties are available.

3.25 If the reference period is a year, all methods will tend to generate similar estimates of the trend in residential property price changes for an entire country. However, as will be seen in the examples presented in Chapters 4-7 and Chapter 11, different methods do generate small but significant differences in trends while for shorter periods they can lead to rather different estimates of price change. The various methods could also produce different signals of turning points.

3.26 As hedonic methods assume that information on the characteristics of the properties sold is known, the samples can be stratified and, if a sufficient number of observations is available, separate indices can be estimated for the strata. In other words, hedonic regression methods can provide a set of constant quality price indices for various types of property. Obviously, if data on some price determining characteristics are available, then repeat sales and assessment-based methods can also be combined with stratification.

3.27 Stratification can also be used to approximate a stock based RPPI. In this case the stratum weights will be based on census data pertaining to the value of the owner occupied housing stock. The stratum price indices will still be based on sample data of properties sold. Within each stratum, the properties traded are now treated as a (random) sample from the stock. Since long time intervals between two censuses is the norm, stock value weights can usually only be updated very infrequently.

3.28 As was discussed previously, for various purposes it is necessary to decompose the overall price of a property into (additive) components that reflect the price of the structure and the price of the land the structure is located on. In Chapter 8 it is shown how hedonic regression techniques can be used to accomplish this decomposition.
The Frequency of the RPPI and User Needs

3.29 For inflation monitoring purposes, most central banks would prefer an RPPI on a monthly or quarterly basis. For national accounts purposes quarterly indices will suffice, while for CPI purposes monthly indices are generally required. Given that the number of observations for a monthly price index will only be approximately one third of the number for a quarterly index, statistical agencies will have to carefully evaluate the tradeoff between publication frequency, timeliness and accuracy. The use of monthly data may lead to rather noisy figures, whatever method used to compile an RPPI. To mitigate the noise, a moving average could be computed but this creates new problems, as will be explained below.

3.30 It is useful to outline some of the tradeoffs that statistical agencies may face when attempting to construct house price indices that meet the needs of users. Before examining the tradeoffs, it will be necessary to review the user needs for a family of residential property price indices. The following list of user needs is borrowed from the list compiled by Emily Carless (2011) from the National Statistician’s Office of the UK Statistics Authority. The family of RPPIs should:\(^{(14)}\)

- be based on the price paid for transacted properties;
- be stratified by region;
- be stratified by type of housing (e.g., detached, row, high rise, type of construction, etc.);
- be computed on a monthly basis;
- aggregate up to a consistent national index;
- be accurate and timely with minimal revisions.

The fifth requirement, that the various sub-indices aggregate up to a consistent national index is not too difficult to satisfy. Whether the first requirement, that the price indices be based on transaction prices, can be met, depends on availability of the data. In many countries, actual selling prices are used to compile RPPIs, but not all statistical agencies may have access to transaction data. Even if transaction data are available, there can be a time lag involved (as will be discussed in Chapter 9), so that in practice the first requirement could be at odds with the sixth requirement, i.e., that the indices should be timely.

3.31 There are also conflicting objectives with some of the other requirements: having many strata and asking for monthly indices may lead to a situation where some strata have only few transactions, resulting in rather volatile and inaccurate sub-indices. Although taking moving averages of the monthly indices can reduce volatility,\(^{(15)}\) such a strategy will not provide timely signals of price change. That is, the resulting average index will be centered in the middle of the time period for the moving average and will not be available until some months have passed.\(^{(16)}\) In particular, this could give a misleading picture of the upswings and downturns in the housing market. So in general, it will not be possible to meet with a single price index all the above listed user needs, and statistical agencies will have to make some compromises in their attempts to meet the different user needs.

Consistency of Monthly with Quarterly Estimates

3.32 How can monthly estimates of real estate price changes be made consistent with quarterly estimates? The answer to this question is reasonably straightforward if the same average price or unit value methodology is applied to the quarterly data as is applied to the monthly data. Suppose that a monthly sales RPPI is constructed using the stratification (or mix adjustment) method. As will be explained in Chapter 4 more thoroughly, the monthly price for a particular cell is the average transaction price or unit value and the corresponding quantity is the total number of properties traded. The quarterly RPPI for that cell would start out by calculating a quarterly unit value, and the corresponding quantity is the quarterly total number of stratum transactions. Some algebra will make clearer the relationship between the quarterly cell price and quantity data to the corresponding monthly data.\(^{(17)}\)

3.33 Suppose that there are \(T\) quarters of monthly data. Denote the value of quarterly transactions in a particular cell in the stratification scheme by \(V'_t\) for \(t = 1, \ldots, T\). Within each quarter \(t\), the value of first month transactions is denoted by \(V'_1\), of second month transactions by \(V'_2\) and of third month transactions by \(V'_3\). The quarter \(t\) monthly unit value prices are denoted by \(P'_t\), \(P'_2\) and \(P'_3\).

\(^{(14)}\) Nevertheless, moving averages are, for example, used in Iceland. It may also be necessary to use slightly out of date information in a monthly CPI context; see Gudnason and Jónsdóttir (2006; 4).

\(^{(15)}\) In addition to the requirements listed, Carless noted that users desire a clear explanation of the methods used to construct the statistics and indicators of the quality of the measures. Also, some users want seasonally adjusted series in addition to the unadjusted series.

\(^{(16)}\) The volatility may also be mitigated by combining some strata, but then users may lose some of the desired geographical detail or type of housing coverage they were expecting. In addition, the new combined strata may not be subject to the same price trend and thus there is the possibility of some resulting unit value bias due to the aggregation of the strata.

\(^{(17)}\) This number is equal to half the window length of the moving average.

\(^{(17)}\) The same type of analysis can be applied to the relationship between an annual (mix adjustment) sales RPPI and the corresponding quarterly estimates.
and the corresponding monthly number of transactions are denoted by \(Q'_t \), \(Q'_t \), and \(Q'_t \). Note that \(V'_m \) equals \(Q'_m Q'_m \) for \(m = 1,2,3 \) and \(t = 1, \ldots, T \). The value of transactions for quarter \(t \), \(V'_t \), is equal to the sum of the monthly transactions within the quarter:

\[
V'_t = V'_1 + V'_2 + V'_3 = P'_1 Q'_1 + P'_2 Q'_2 + P'_3 Q'_3
\]

(3.4)

The quarterly quantity series, \(Q' \), is the sum of the monthly transactions within the quarter and the quarterly price series, \(P' \), is the quarterly unit value for the cell under consideration; i.e.:

\[
Q'_t = Q'_1 + Q'_2 + Q'_3
\]

(3.5)

\[
P'_t = V'_t / Q' = \frac{[P'_1 Q'_1 + P'_2 Q'_2 + P'_3 Q'_3]}{[Q'_1 + Q'_2 + Q'_3]}
\]

(3.6)

\[
t = 1, \ldots, T
\]

where the month \(m \) share of transactions in quarter \(t \), \(s'_m \), is defined as

\[
s'_m = \frac{Q'_m}{Q'}
\]

(3.7)

\[
m = 1,2,3 ; t = 1, \ldots, T
\]

Thus, the quarterly price level for the cell under consideration, \(P' \), is equal to a transaction share weighted average of the monthly price levels \(P'_m \) for the months \(m \) in quarter \(t \).

3.34 For RPPI construction methods other than stratification (hedonic regression, repeat sales, use of appraisal data), the relationship between the quarterly estimates of price change and the corresponding monthly estimates will be more complex. However, in the end, these methods will generate a price index, say \(P' \) for period \(t \), that is associated with a certain group of transactions (or stocks). Generally, the corresponding period \(t \) value associated with these stocks, say \(V'_t \), will be available and thus a corresponding period \(t \) volume, \(Q' = V'/P' \), can be defined, so the above algebra can be applied.

Revision Policies

3.35 It would seem that an RPPI for the sales of properties could be constructed without a need for revisions but as it turns out, it is not always easy to gather timely data on property sales. The construction of a stock type RPPI is dependent on census information on housing, which is often subject to long delays. Moreover, when a new census becomes available, it is generally desirable to use this information to retrospectively adjust the stock type RPPI back to the time of the previous housing census. Thus, it will generally be desirable to allow stock RPPIs to be revised. This should not pose any major problems for national accounts purposes, since they are generally subject to revisions.

3.36 Revisions do cause problems, however, in the context of non-revisable statistics such as the CPI. The treatment of owner occupied housing in a CPI requires a stock type RPPI if either the user cost or opportunity cost approach is used.\(^{(1)}\) It may then be necessary to use preliminary information to compile the RPPI. When additional data become available, a revised CPI could be published as an analytical series so that analysts could form some rough estimates of the possible bias in using the unadjusted CPI based on a preliminary estimate of the RPPI for owner occupied housing.

Seasonal Adjustment

3.37 Although the situation may differ somewhat across countries, in general there are substantial seasonal fluctuations in the quantities of properties traded over the year. For the construction of an RPPI, the question is whether seasonality in quantities leads to seasonality in prices. The empirical evidence is somewhat mixed. Meese and Wallace (1991) find limited seasonality in prices in their econometric study. Prasad and Richards (2008) report that median prices in Australian cities are seasonal, but this seasonality vanishes after controlling for compositional change through stratification. At aggregate levels, and particularly at the nation-wide level, it seems therefore unlikely that RPPI series exhibit strong seasonal fluctuations. However, at lower levels of aggregation it would be useful to check whether any seasonality in prices is present and adjust for this if seasonally adjusted series are required. Some users do want seasonally adjusted series made available to them (in addition to the unadjusted series) if there is evidence of seasonality in prices.

3.38 In Chapter 4, a numerical example is worked out which shows how seasonality can be treated using simple index number techniques. Standard seasonal adjustment methods could also be used.

\(^{(1)}\)The acquisitions approach requires a new house price index which probably should exclude the land component of the selling price of a new dwelling unit. This new house price index could be adequately approximated by a suitable new house construction price index.
Appendix: The Role of House Price Indices in the Construction of User Costs

3.39 This Appendix shows how user costs and opportunity costs can be constructed. The first section discusses how user costs are constructed for durable goods in general. Next, additional difficulties are brought in which arise from the fact that properties are unique goods and are a mixture of land and structures components. Finally, the opportunity cost approach to pricing the services of Owner Occupied Housing (OOH) is discussed.

The Construction of User Costs for Durable Goods in General

3.40 In this section, the elements of user cost theory for a durable consumer good are laid out. The essence of durability is that it provides some sort of service to the purchaser over many time periods. For many purposes (including the valuation of household consumption expenditures on owner occupied housing services) it is not appropriate to apply the entire purchase cost of a durable good to the initial period of purchase; the purchase cost should be spread over its useful life. The question then becomes: how should this intertemporal cost be allocated over time?

3.41 There are two main approaches to pricing the services of an owner occupied dwelling unit: the rental equivalence approach and the user cost approach. The user cost approach is important in its own right – when only few dwelling units in a country are rented, it is not realistic to value the services of owner occupied housing using the rental equivalence approach – but it also is important as a way to explain how landlords might set their rents for rental dwelling units. However, pricing shelter services is more difficult than pricing the services of, say, a standard model automobile because housing services are more complex. Therefore, in this section the problems of pricing the services of an ordinary durable consumer good (that is available in the same form over many periods) will first be presented before dealing with the complexities associated with housing.

3.42 The user cost approach to the treatment of durable goods is in some ways very simple: it calculates the cost of purchasing the durable good at the beginning of the period, using the services of the durable over many periods and then netting off from these costs the benefits that could be received by selling the durable good at the end of the period, taking into account the interest foregone from having one’s capital tied up in purchasing the durable. However, there are several details that are somewhat controversial such as the treatment of depreciation, interest and capital gains or holding gains.

3.43 Another complicating factor with the user cost approach is that it makes a distinction between current period purchases within the period under consideration and the holding of physical stocks of the durable at the beginning and end of the accounting period. Normally in the system of national accounts, all purchases are thought of as taking place at a single point in time, say in the middle of the period under study, and consumption is thought of as taking place within the period as well. Thus, in this case where the commodity is entirely consumed within the purchasing period, there is no need to consider the valuation of stocks of consumer durables that households may have at their disposal. The complexity involved in accounting for stocks and flows are unfamiliar to many price statisticians, so it may be useful to describe these problems in some detail here.

3.44 To determine the net cost of using a particular durable good during say period 0, assume that one unit of the durable good is purchased at the beginning of period 0 at the price \(P_0 \). The “used” or “second-hand” durable good can be sold at the end of period 0 at the price \(P_S \). It might seem that a reasonable net cost for the use of one unit of the consumer durable during period 0 would be its initial purchase price \(P_0 \) less its end of period 0 “scrap value” or market opportunity selling price, \(P_S \). However, money received at the end of the period is not as valuable as money received at the beginning of the period. To convert the end of period value into its beginning of the period equivalent value, it is necessary to discount the term \(P_S \) by the term \(1+r^e \) where \(r^e \) is the beginning of period 0 nominal interest rate that the household (or purchaser) faces. Hence, the period 0 user cost \(u^0 \) for the consumer durable (21) is defined as

\[
\begin{align*}
(u^0) & = (P^0 - P_S)/(1+r^e) \\
& = u^0 \\
& = (P^0 - u^0)
\end{align*}
\] (3.45)

This approach to the derivation of a user cost formula was used by Dewrent (1974) who in turn based it on an approach due to Hicks (1946, 326). Note that, later, this user cost will be interpreted as a beginning of the period user cost since all costs are discounted to the beginning of the period.
can be regarded as an investment, which is to yield the appropriate opportunity cost of capital to the consumer faces. At the end of period 0, this rate of return could be realized provided that P^0, r^0 and the selling price of the durable at the end of the period P^1 satisfy

$$P^0(1+r^0) = P^1 \quad (3.4)$$

Given P^0, r^0, (3.4) determines P^1, which in turn, given P^0, determines the user cost $u^0 \equiv (3.4.2)$.

3.46 From the above it is clear that the user cost approach to pricing the services of a durable good for a period involves an investment aspect. Note that the user cost approach is also a financial opportunity cost approach, i.e., the opportunity cost of the financial capital that is tied up in the purchase (or continued holding) of the durable good is taken into account. Finally, note that user costs are not like the prices of nondurables or services because the user cost concept involves pricing the durable at two points in time rather than at a single point in time. Because the user cost concept involves prices at two points in time, money received or paid out at the first point in time is more valuable (assuming prices are going up in the economy) than money paid out or received at the second point in time and so interest rates filter into the user cost formula.

3.47 Also, because the user cost concept involves prices at two points in time, expected prices can be involved if the user cost is calculated at the beginning of the period under consideration instead of at the end. So the price statistician has two options for the choice of P^1:

- Use the expected price of the durable at the end of the period from the perspective of the beginning of the period, or
- Use the actual market price of a similar second hand durable at the end of the period (if such a market price exists).

3.48 The use of an expected price leads to an ex ante user cost whereas the use of an actual market price for the used durable at the end of the period leads to an ex post user cost. Which concept should be used in practice? In the present context it is reasonable to favour the ex ante concept for two reasons:

- The ex ante user cost concept is likely to be closer to a rental price of the durable good (if it exists), which many price statisticians would view as a preferred price for the services of the durable during the period, and
- The ex ante user cost is closer to the purchaser’s expected cost for using the durable good during the period; the purchaser cannot know exactly what the end of period price will be and hence must form expectations about the end of period price of the durable, which leads to the ex ante user cost as the expected cost for using the services of the durable during the period. Thus, the ex ante user cost is likely to be the relevant charge for the services of the durable that motivates consumer behavior.

The issue of how exactly one forms expectations for the selling price of a used durable will be examined later when the pricing of housing services is discussed.

3.49 With all of the above complications, it is understandable that many price statisticians would like to avoid using user costs as a pricing concept. However, the use of user costs may be unavoidable in the context of pricing the services of owned dwellings under certain conditions. The user cost formula (3.1) can be expressed in a more familiar form using the end of period 0 depreciation rate δ_0 and the period 0 asset inflation rate i_0. Define the end of period 0 depreciation rate δ_0 by

$$P^0 = P^1(1 - \delta_0)$$

The period 0 inflation rate for the new asset, i_0, is defined by

$$P^1 = P^0(1 + i_0)$$

Eliminating P^1 from equations (3.4.4) and (3.4.5) leads to the following formula for the end of period 0 used asset price:

$$P^0 = (1 - \delta_0)(1 + i_0)P^0 \quad (3.4.6)$$

Substitution of (3.4.6) into (3.1) yields the following expression for the period 0 user cost u^0:

$$u^0 = [(1 + r^0) - (1 - \delta_0)(1 + i_0)]P^0/(1 + r^0) \quad (3.4.7)$$

Note that $r^0 + i_0$ can be interpreted as a period 0 real interest rate and that $\delta_0(1 + i_0)$ can be interpreted as an inflation adjusted depreciation rate.

3.50 In (3.4.7), the user cost u^0 is expressed in terms of prices that are discounted to the beginning of period 0. However, it is also possible to express the user cost in terms of prices that are “antisdecouned” or “accompanied” to the end of period 0. The end of period 0 user cost p^0 is defined as

$$p^0 = (1 + r^0)u^0 = [(1 + r^0) - (1 - \delta_0)(1 + i_0)]P^0 = [r^0 - i_0 + \delta_0(1 + i_0)]P^0 \quad (3.4.8)$$

where the second equation follows using (3.4.7). If the real interest rate r^0 is less.

(22) This derivation for the user cost of a consumer durable was also made by Dievent (1974, 504).

(23) If a company is in the business of leasing the services of an automobile for a certain period, it has to form expectations about the price of its used autos at the end of the leasing period in order to calculate its schedule of rental or leasing prices for its stock of automobiles.

(24) If the durable that was purchased (or held) by the household at the beginning of the period was a used durable, then interpret P^0 as the second hand market price of a used durable that is in the same condition as the initially held durable.

(25) The beginning of the period user cost u^0 discounts all monetary costs and benefits into their dollar equivalent at the beginning of period 0 whereas p^0 accumulates or appreciates all monetary costs and benefits into their dollar equivalent at the end of period 0. This leaves open how flow transactions that take place within the period should be treated. Following the conventions used in financial accounting suggests that flow transactions taking place within the accounting period be regarded as taking place at the end of the accounting period and hence following this convention, end of period user costs should probably be used by the price statistician. For additional material on beginning and end of period user costs, see Dievent (2005, 485).
the asset inflation rate \(i^0\) and if the generally small term \(d^0\) is neglected, then the end of the period user cost defined by (3.8) reduces to (27)

\[
p^0 = (1 + r^0 + d^0)P^0
\]

(3.9)

Abstracting from transactions costs, it can be seen that the end of the period user cost defined by (3.9) is an approximate rental cost; the rental cost for the use of a durable good should equal the (real) opportunity cost of the capital tied up, \(r^0P^0\), plus the decline in value of a new asset over the period, \(d^0P^0\). Formulae (3.8) and (3.9) thus cast some light on the economic determinants of rental or leasing prices for consumer durables.

3.51 If the simplified user cost formula defined by (3.9) above is used, then forming a price index for the user cost of a durable good is not very much more difficult than forming a price index for the purchase price of the durable good, \(P^0\). The price statistician needs only to

- Make a reasonable assumption as to what an appropriate monthly or quarterly real interest rate \(r^0\) should be; (27)
- Make an assumption as to what a reasonable monthly, quarterly or annual depreciation rate \(d^0\) should be; (28)
- Collect purchase prices \(P^0\) for the durable and form the user cost.

3.52 There are some additional difficulties associated with the user cost approach to measuring the services of a consumer durable. The above discussion deals only with the formation of a user cost for a newly purchased consumer durable. It is necessary to extend the analysis to price the services of used units of the consumer durable as well. In order to price out the services of a used durable good, it is necessary to make assumptions about the form of depreciation of the good; does the service flow given to the consumer remain constant throughout the useful life of the durable good or does it decline as the good ages? If the service flow remains constant, then we have one hoss shay or light bulb depreciation whereas if the service flow declines at a constant linear or geometric rate, then we have straight line or geometric depreciation. (29)

3.53 How can one tell whether one hoss shay or geometric depreciation is applicable for a certain consumer durable? The two patterns of depreciation (and user valuation) can be distinguished if cross sectional information on rentals of the consumer durable by the age of the rented asset is available. If depreciation is thought to follow that of the one hoss shay, then the rental rates for the consumer durable at a given point in time should be approximately constant for all ages of the durable good whereas if there is geometric depreciation, the rental rates for the good should decline at a geometric rate according to the age of the used durable good. Thus, the various patterns of depreciation can be distinguished if rental markets for used durables exist. In a similar fashion, when cross sectional information on the prices of used units of the consumer durable is available, alternative patterns of depreciation can be distinguished. (30)

The User Cost of Owner Occupied Housing

3.54 An owner occupied dwelling is different from a normal consumer durable good because of its unique character. Consequently, it will be difficult to use information on used asset prices in order to determine the pattern of depreciation, which is required to measure a user cost for an owned dwelling unit. As was mentioned in the introduction to this chapter, a particular dwelling unit in a particular country is unique for a number of reasons:

- The location of each dwelling unit is unique and location will affect the price of the unit.
- Over time, the dwelling unit depreciates; unless there is one hoss shay depreciation, the utility generated by a particular dwelling for the occupying household will tend to decline over time due to the effects of the aging of the structure.
- On the other hand, the effects of depreciation can be offset by renovation expenditures, which increase the utility of the dwelling unit.

3.55 For some purposes, it is important to decompose the price of a property into land and structures components. To model the fact that housing is a composite good, (31)

(27) If one takes the ratio of the approximate rental price for the durable good, \(p^0\), to its asset value, \(P^0\), the rent to value ratio \(p^0/P^0 = r^0 + d^0\) is obtained, which is equal to the sum of the appropriate real interest rate \(r^0\) plus the appropriate depreciation rate \(d^0\). Since real rates of interest and depreciation rates are approximately constant over time, the rent to value ratio will also be approximately constant over time and hence a historical rent to value index will generally give an adequate approximation to an imputed rental rate for the consumer durable. In the housing literature, a rent to value ratio is often called a capitalization rate; e.g., see Garner and Short (2002; 237) or Crane, Nakamura and Voith (2000; 70).

(28) This is not completely straightforward. It is difficult to determine exactly what the appropriate household nominal opportunity cost of capital should be and even if we come to agreement on this point, there will be difficulties in estimating expected inflation rates. In the end, it may boil down to picking a somewhat arbitrary real interest rate in the 2% to 5% range (for annual rates), depending on the recent experience of the country under consideration.

(29) The geometric model for depreciation requires only a single monthly or quarterly depreciation rate. Other models of depreciation may require the estimation of a sequence of vintage depreciation rates. If the estimated annual geometric depreciation rate is \(d^0\), then the corresponding monthly geometric depreciation rate \(d^m\) can be obtained by solving the equation \((1 + r^m)^{12} = 1 + d^m\). Similarly, if the estimated annual real interest rate is \(i^\ast\), then the corresponding monthly real interest rate \(r^m\) can be obtained by solving the equation \((1 + r^m)^{12} = 1 + i^\ast\).

(30) For descriptions of how to construct user costs by the age of the asset for each of these depreciation models, see Diewert and Lawrence (2000) or Diewert (2005; 506-521).

(31) In the housing context where each house can be regarded as a unique asset, it is necessary to make some additional assumptions in order to identify the form of depreciation. The extra assumptions are of the following type: it is assumed that all housing units in a certain class of structures have a similar pattern of depreciation. Using this type of assumption, empirical evidence suggests that one hoss shay depreciation is unlikely in the housing market since renters are generally willing to pay a rent premium for a new unit over an older unit of the same type. For empirical evidence of this age premium, see Malpezzi, Uzanne and Thibodeau (1987; 378) and Huffman and Kurz (2002; 19).
consider a particular newly constructed dwelling unit that is purchased at the beginning of period 0. Suppose that the purchase price is \(V^0 \). This value can be regarded as the sum of the cost of producing the structure, \(P_s Q_s^0 \), where \(Q_s^0 \) is the number of square meters of floor space in the structure and \(P_s \) is the beginning of period 0 price of construction per square meter, and the cost of the land, \(P_L Q_L^0 \), where \(Q_L^0 \) is the number of square meters of the land that the structure sits on and the associated yard and \(P_L \) is the beginning period 0 price of the land per square meter. (\(^{32}\)) Thus at the beginning of period 0, the value of the dwelling unit is \(V^0 \) defined as follows:

\[
V^0 = P_s Q_s^0 + P_L Q_L^0 \quad (3.A10)
\]

3.56 Suppose that the anticipated price of a unit of a new structure at the beginning of period 1 is \(P_s^1 \) and that the anticipated price of a unit of land at the beginning of period 1 is \(P_L^1 \). Define the period 0 anticipated inflation rates for new structures and land, \(i_s^0 \) and \(i_L^0 \) respectively, as follows:

\[
1 + i_s^0 = P_s^1/P_s^0 \quad (3.A11)
\]

\[
1 + i_L^0 = P_L^1/P_L^0 \quad (3.A12)
\]

Let \(\delta^0 \) be the period 0 depreciation rate for the structure. The anticipated beginning of period 1 value for the structure and the associated land is then equal to

\[
V'^1 = P_s^0 Q_s^0 (1 - \delta^0) + P_L^0 Q_L^0 \quad (3.A13)
\]

So the anticipated value of the dwelling unit at the end of period 1, \(V'^1 \), equals the anticipated price (per unit of new structure of the same quality) at the end of the period, \(P_s^1 \), times one minus the period 0 depreciation rate, \(1 - \delta^0 \), times the quantity of structure purchased at the beginning of period 0, \(Q_s^0 \), plus the anticipated price of land at the end of period 0, \(P_L^0 \), times the quantity of land that the structure associated with the structure, \(Q_L^0 \).

3.57 Now calculate the cost (including the imputed opportunity cost of capital \(r^0 \)) (\(^{33}\)) of buying the dwelling unit at the beginning of period 0 and (hypothetically) selling it at the end of period 0. The following end of period 0 user cost or imputed rental cost \(R^0 \) for the dwelling unit is obtained using (3.A11)-(3.A13):

\[
R^0 = V^0 (1 + r^0) - V'^1 \quad (3.A14)
\]

\[
= [P_s^0 Q_s^0 + P_L^0 Q_L^0] (1 + r^0) - [P_s^1 (1 - \delta^0) Q_s^0 + P_L^1 Q_L^0] \]

\[
= [p_s^0 Q_s^0 + p_L^0 Q_L^0] (1 + r^0) - [p_s^1 (1 + i_s^0) (1 - \delta^0) Q_s^0 + p_L^0 (1 + i_L^0) Q_L^0]
\]

\[
= p_s^0 Q_s^0 + p_L^0 Q_L^0
\]

where separate period 0 user costs of structures and land, \(p_s^0 \) and \(p_L^0 \), are defined as follows:

\[
p_s^0 = [(1 + r^0) - (1 + i_s^0) (1 - \delta^0)]P_s^0
\]

\[
= [r^0 - i_s^0 + \delta^0 (1 + i_s^0)]P_s^0 \quad (3.A15)
\]

\[
p_L^0 = [(1 + r^0) - (1 + i_L^0)]P_L^0 = [r^0 - i_L^0]P_L^0 \quad (3.A16)
\]

Note that the above algebra indicates some of the most important determinants of market rents for rental properties. (\(^{34}\)) The user cost formulae defined by (3.A15) and (3.A16) can be further simplified if the approximations that were made in the previous section are made here as well (recall equation (3.A9) above); i.e., assume that the terms \(r^0 - i_s^0 \) and \(r^0 - i_L^0 \) can be approximated by a real interest rate \(r^0 \) and neglect the small term \(\delta^0 \) times \(i_s^0 \) in (3.A15). Then the user costs defined by (3.A15) and (3.A16) simplify to

\[
p_s^0 = (r^0 + \delta L) P_s^0 \quad (3.A17)
\]

\[
p_L^0 = r^0 P_L^0 \quad (3.A18)
\]

3.58 The above exposition has neglected two other sources of period 0 cost associated with owning a dwelling unit:

- Various maintenance and insurance costs that are associated with the ownership of a dwelling unit and
- Property taxes that may be payable by the owner to local or state governments.

Assume that period 0 maintenance and insurance costs, \(M_s^0 \), are mainly associated with the structure rather than the land under the structure. Suppose that these costs are paid at the end of period 0. These costs can be converted into a per unit structure charge \(\mu_s \) as follows:

\[
\mu_s^0 = M_s^0 / (P_s Q_s^0) \quad (3.A19)
\]

Suppose the property taxes that fall on the structure, \(T_s^0 \), and the property taxes that fall on the land under the structure, \(T_L^0 \), are paid at the end of period 0. Then the period 0 structure and land property tax rates, \(\tau_s^0 \) and \(\tau_L^0 \), can be defined as follows:

\[
\tau_s^0 = T_s^0 / (P_s Q_s^0) \quad \text{and} \quad \tau_L^0 = T_L^0 / (P_L Q_L^0) \quad (3.A20)
\]

These additional maintenance and property tax costs need to be added to the imputed rental cost for using the dwelling unit \(R^0 \). Thus (3.A14) now becomes:

\[
R^0 = V^0 (1 + r^0) - V'^1 + M_s^0 + T_s^0 + M_L^0 + T_L^0 \quad (3.A21)
\]

\[
= p_s^0 Q_s^0 + p_L^0 Q_L^0
\]

Looking at (3.A16), it can be seen that the land user cost could be negative if the anticipated rate of land price appreciation, \(i_L^0 \), is greater than the beginning of the period opportunity cost of capital, \(r^0 \). Possible solutions to this complication will be discussed below.

©International Monetary Fund. Not for Redistribution
where the new separate period 0 user costs of structures and land, \(p_s^0 \) and \(p_L^0 \), are defined as follows:

\[
\begin{align*}
p_s^0 &= [r^d - i_s^d]P_s^0 + \delta(1 + i_s^d)\mu_s^d + \tau_s^d]PS^0 \quad (3.A22) \\
p_L^0 &= [r^d - i_L^d]P_L^0 + \tau_L^d]PL^0 \quad (3.A23)
\end{align*}
\]

The imputed rent for a dwelling unit using the user cost approach to the valuation of housing services is thus made up of six main costs:

- The real opportunity cost of the financial capital tied up in the structure, \((r^d - i_s^d)P_s^0 \),
- The real opportunity cost of the financial capital tied up in the land, \((r^d - i_L^d)P_L^0 \),
- The depreciation cost of the structure, \(\delta(1 + i_s^d)P_s^0 \),
- The maintenance and insurance costs associated with the structure, \(\mu_s^dP_s^0 \),
- The property taxes associated with the structure, \(\tau_s^dP_s^0 \), and
- The property taxes associated with the land underneath and surrounding the structure, \(\tau_L^dP_L^0 \).

3.59 The above user cost approach to pricing the services of a dwelling unit in period 0 can be applied to various housing strata, e.g., to detached dwellings, row houses or duplexes or town houses and apartment blocks. For the last two types of dwelling units, the land component for each individual dwelling unit needs to be constructed. For example, if there are 20 dwelling units in an apartment block, then the land share of each individual dwelling unit could be set to 1/20th of the total land area that the apartment block occupies. (35) Dwelling units can also be grouped according to their construction type, which could be primarily wood, brick, concrete or “traditional”.

3.60 If a statistical agency produces national balance sheet estimates, then data on the total value of residential land and residential structures should be available. However, data on the quantity of residential land may not be known. Estimates of the country’s total real stock of residential structures can be obtained by deflating the balance sheet estimate of the value of residential housing by the country’s corresponding investment price deflator for residential housing.

3.61 There are at least two uses for the above user cost approach to pricing the services of housing:

- The user costs can be compared to market rents for dwelling units that are actually rented during the period under consideration, and
- The user costs can be used to value the services of owner occupied housing.

As will be seen later in this section, it turns out that user costs do approximate market rents (for lower cost housing in the US at least), provided expectations of future inflation in house prices are formed in a certain way.

3.62 As mentioned before, two main methods for valuing the services of owner occupied housing have been suggested for national accounts purposes: the user cost approach just explained and the rental equivalence approach. The rental equivalence approach is straightforward; for owner occupied houses in a certain stratum, we look for similar rented dwelling units and impute the market rental to the corresponding owner occupied house. In many countries, the rental equivalence approach works well, but it does not work well if rental markets are thin or if there are price controls on rents.

3.63 If user costs are used to value the services of owner occupied dwelling units in a country, then the maintenance and insurance rate term \(\tau_s^d \) in the user cost of structures formula (3.A22) should be dropped from the formula, since maintenance and insurance expenditures for owner occupied houses will generally be captured elsewhere in the household expenditure accounts.

3.64 The simplified approach to the user cost of housing explained above in equations (3.A17) and (3.A18) can be even further simplified by assuming that the ratio of the quantity of land to structures is fixed and so the aggregate user cost of housing is equal to \([r^d + \delta + \mu + \tau]P_L^0 \), where \(P_L^0 \) is a quality adjusted price index that is applicable to the country’s entire housing stock (including both structures and the underlying land) for the period under consideration and \(\delta, \mu \) and \(\tau \) are respectively a depreciation rate, a maintenance and insurance rate and a property tax rate that applies to the composite of structures and land. Under this simplified approach to value the services of owner occupied housing, as was seen in the last paragraph above, the term \(\mu \) should be dropped from the simplified user cost. The resulting simplified approach is applied in Iceland; see Gudnason (2004) and Gudnason and Jónsdóttir (2009) (36) and in some European countries; see the detailed exposition of the method by Katz (2009). (37) A variant of this approach is used by the US Bureau of Economic Analysis: Lebow and Rudd (2003; 168) note that the US national accounts imputation for the services of owner occupied housing is obtained by applying rent to value ratios for

(35) It is not completely straightforward to allocate the common land shared by the dwelling units into individual shares; i.e., instead of an equal division of the land, we could use the relative floor spaces of each apartment as the allocator. There are also problems associated with the relative height of the individual apartment units; i.e., an apartment on a higher floor will typically rent for more than an apartment on a lower floor.

(36) The real interest rate that is used is approximately 4% per year and the combined depreciation rate for land and structures is assumed to equal 7.25% per year. The depreciation rate for structures alone is estimated to be 1.5% per year. Property taxes are accounted for separately in the Icelandic CPI. Housing price information is provided by the State Evaluation Board based on property sales data of both new and old housing. The SEB also estimates the value of the housing stock and land in Iceland, using a hedonic regression model based on property sales data. The value of each household’s dwelling is collected in the Household Budget Survey.

(37) Katz (2009) and Garner and Verbrugge (2009b, 176) give further references to the literature on the simplified user cost method.
tenant occupied housing to the stock of owner occupied housing with the same characteristics as the rented property.\(^{[66]}\) The rent to value ratio can be seen as an estimate of the applicable real interest rate plus the depreciation rate plus a maintenance and insurance rate plus the property tax rate, \(r^o + 6 + \mu + \tau.\)\(^{[67]}\)

3.65 How exactly should the real interest rate, \(r^o\), be estimated? One possible method is to just make a reasonable guess: \(r^o\) is estimated as expected inflation plus a risk premium. The remaining question was what value of the real rate of return is appropriate? Evidence was presented to the task force that suggested that, at least in Western European countries, the appropriate real rate of return for owner-occupied dwellings was lower than that for other durables, perhaps in the 2.5 to 3.0 percent range. It was the consensus of the task force that given the actual situation in the CCs [Candidate Countries from Eastern Europe], real rates of return on both dwellings and land should be assumed to be 2.5 percent.” Arnold J. Katz (2009; 46).

3.66 A second method is to use mortgage interest rates as estimates for the nominal opportunity cost of financial capital tied up in housing and to use econometric forecasting techniques to estimate predicted house price inflation rates (and then the real interest rate can be set equal to the nominal interest rate less the predicted house price inflation rate). Several variants of this second approach were tried by Verbrugge (2008) and Garner and Verbrugge (2009a) (2009b) using US data. However, as these authors show, this approach was not successful in that the resulting user cost estimates were extremely volatile (and frequently negative) and not at all close to corresponding market rents.

3.67 A third approach to the determination of an appropriate real interest rate to be used in a user cost formula for housing services was carried out by Garner and Verbrugge (2009b) using US data. They used applicable mortgage interest rates as estimates for the nominal opportunity cost of financial capital and used current period estimates of consumer price index inflation as their estimate of expected house price appreciation. Much to their surprise, they found that the resulting user costs tracked market rents rather well. \(^{[68]}\) The conclusion is that either making a reasonable guess for the real interest rate or using CPI inflation as a proxy for expected house price inflation gives rise to reasonable user costs that are likely to be fairly similar to market rents, at least for relatively inexpensive housing units.

3.68 It is evident that the main drivers for the user costs of structures and land are price indices for new dwelling construction, \(P^s\), and for residential land, \(P^l\). Most statistical agencies have a constant quality price index for new residential structures, because this index is required in the national accounts in order to deflate investment expenditures on residential structures. This index could be used as an approximation to \(P^s\). \(^{[69]}\)

3.69 This completes the overview of the user cost approach to pricing residential housing services. In the following section, another approach to pricing the services of owner occupied housing will be reviewed: the opportunity cost approach.

The Opportunity Cost Approach to the Valuation of Owner Occupied Housing Services

3.70 Recall the two main methods for valuing the services of owner occupied housing (OOH): the rental equivalence approach and the user cost approach. In the rental equivalence approach, an owner of a dwelling unit who chooses to live in it (or at least not rent it out to someone else) values the services of the dwelling by the market rent which is foregone. This is a very direct opportunity cost of using the dwelling. On the other hand, the user cost approach to valuing dwelling services is basically a financial opportunity cost of using the services of the dwelling unit during the period under consideration. It has been suggested that the true opportunity cost of using the services of an owned dwelling unit is the maximum of the rent foregone and the user cost:

“We conclude this section with the following (controversial) observation: perhaps the ‘correct’ opportunity cost of housing for an owner occupier is not his or her internal user cost but the maximum of the internal user cost and what the property could rent for on the rental market. After all, the concept of opportunity cost is supposed to represent the maximum sacrifice that one makes in order to consume or use some object and so the above point would seem to follow.” W. Erwin Diewert (2009b; 113).

Diewert and Nakamura (2009) and Diewert, Nakamura and Nakamura (2009) pursued this opportunity cost approach to the valuation of owner occupied housing services in more detail but it can be seen that this approach seems to be a valid one. Moreover, it has the advantage

\(^{[66]}\) See also Crone, Nakamura and Voeth (2009) and Garner and Short (2009, 237) for a description of this capitalization method for determining rental prices for housing units from estimates of the corresponding asset values. It can be seen that this method is actually a method for implementing the rental equivalence approach to valuing the services of owner occupied dwelling units.

\(^{[67]}\) If an owned dwelling unit has the value \(V^o\) and a rented dwelling unit with the same characteristics has the rent to value ratio \(\gamma = r^o + 6 + \mu + \tau\), then the imputed rent for the owned dwelling unit is set equal to \(\gamma \cdot V^o = (r^o + 6 + \mu + \tau) V^o\), since insurance and maintenance expenditures on the owned dwelling will be recorded elsewhere in the System of National Accounts.

\(^{[68]}\) The Australian Bureau of Statistics assumes a constant real interest rate equal to 4% per year when constructing its estimates of capital services.

\(^{[69]}\) Using this approach, Garner and Verbrugge (2009b; 179) also found that there were no negative estimated user costs in their US data set.
of eliminating the problem with the user cost approach: namely, that the user cost approach can generate negative user costs if ex post or forecasted housing inflation rates are used in the user cost formula.

3.71 In practice, the opportunity cost approach to pricing OOH services may lead to similar results as the rental equivalence approach provided that expected inflation in the user cost formula is set equal to CPI inflation, since Garner and Verbrugge (2009b) show that for most low end rental properties, the rental equivalence and user cost approaches give much the same answer, at least in the US. However, there is evidence that user costs may be considerably higher than the corresponding market rentals for high end properties. Table 3.1 is taken from Heston and Nakamura (2009a; 113) (2009b; 277) and shows average annual market rent to market value of rental properties in a number of regions; i.e., it shows capitalization ratios as a function of the value of the rental property. Table 3.1 is based on a survey of US federal government employees conducted as part of a Safe Harbor process regarding the Cost of Living Allowance (COLA) program administered by the United States Office of Personnel Management. This program began in 1948 and pays an allowance above the federal salary schedule in three geographic areas (Alaska, the Caribbean and the Pacific) based on prices in these COLA areas relative to the Washington D.C. housing area. (43)

Two facts emerge from the Table 3.1:

• Capitalization ratios differ substantially across regions (44), and
• As one moves from inexpensive properties to more expensive properties the capitalization ratio for the high end properties is about one half the ratio for low end properties for all regions.

The second point listed above also emerges from the much more extensive US data on annual rents for the years 2004-2006 as a function of the corresponding home values found in Figure 1 in Garner and Verbrugge (2009b; 178). For a $100,000 home, the corresponding average annual rent was about $10,000 while for a $900,000 home the corresponding average annual rent was about $30,000. Thus the capitalization ratio fell from about 10% to about 3.3% as the home value increased from $100,000 to $900,000.

(43) This program is directed at comparing the costs of living for federal employees in the non-continental United States to Washington D.C. area. Housing is one of the most important and most difficult of the comparisons required under this program. The COLA areas include Alaska, Guam, Hawaii, Puerto Rico, and the U.S. Virgin Islands: a very diverse range of climates and housing needs.

(44) The relatively high capitalization ratios for Alaska may be due to the inclusion of heating services in the rent.

Table 3.1. Estimated Rent to Value Ratios as Percentages (Capitalization Ratios)

<table>
<thead>
<tr>
<th>Value($)</th>
<th>Renters</th>
<th>Alaska</th>
<th>Wash D.C.</th>
<th>Carib</th>
<th>Hawaii-Pacific</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
</tr>
<tr>
<td>50,000</td>
<td>13.0</td>
<td>8.9</td>
<td>6.3</td>
<td>6.9</td>
<td></td>
</tr>
<tr>
<td>100,000</td>
<td>12.0</td>
<td>8.2</td>
<td>5.8</td>
<td>6.4</td>
<td></td>
</tr>
<tr>
<td>200,000</td>
<td>10.2</td>
<td>6.9</td>
<td>4.9</td>
<td>5.4</td>
<td></td>
</tr>
<tr>
<td>500,000</td>
<td>6.2</td>
<td>4.3</td>
<td>3.0</td>
<td>3.3</td>
<td></td>
</tr>
</tbody>
</table>

Source: Heston and Nakamura (2009a)

3.72 What factors could explain this dramatic drop in the capitalization ratio as we move from inexpensive properties to more expensive properties? As was indicated previously, the rent to value ratio can be regarded as an estimate of the applicable real interest rate plus the depreciation rate plus the property tax rate, \(r^* + \delta + \mu + \tau \), and these rates should not be all that different for properties of differing value. There are at least three possible explanations:

• High value properties may have a much higher proportion of land, hence the depreciation rate \(\delta \), regarded as a decline in value of the property due to aging of the structure, will be smaller as the land to structure ratio increases. (45)
• A substantial fraction of a landlord’s monitoring, accounting and billing expenses may be in the nature of a fixed cost and hence these costs will drop as a fraction of the rent as the value of the property increases.

(45) This explanation was suggested by Drewett (2009a; 486) and Garner and Verbrugge (2009b; 182).
• Rentals of high value residential properties are not made on a commercial basis; i.e., they may be made on a temporary basis, with the renters serving as “house sitters” who pay somewhat subsidized rents as compared to the owner’s financial opportunity cost.

It seems unlikely that the imperfect determination of the depreciation rate can explain the big decline in capitalization ratios as the value of the property increases; estimates of housing depreciation rates are generally in the 1 to 2% per year range, and these rates are too low to fully explain the declines in the capitalization ratios. Similarly, the costs of maintaining and insuring a rental property that are collected in the term μ are likely to be relatively small and thus are unlikely to fully explain the phenomenon. Thus it may be that the third explanation is an important explanatory factor. If this is indeed the case, then the opportunity cost approach to the valuation of OOH services would give a much higher valuation to OOH services than the rental equivalence approach.

(47) Thus the discrepancy between the rental equivalence approach to the valuation of OOH services and the opportunity cost approach may not be very important in the time series context because both measures may move in tandem. But in the context of making international comparisons, this argument will not be applicable due to the fact that the percentage of owner occupied dwelling units differs substantially across countries.

Garner and Verbrugge (2009b; 176) and Garner and Short (2009; 244) assume annual depreciation rates (as fractions of the value of the property including both structures and land) of 1% per year.
Stratification or Mix Adjustment Methods
Simple Mean or Median Indices

4.1 The simplest measures of house price change are based on some measure of central tendency from the distribution of house prices sold in a period, in particular the mean or the median. Since house price distributions are generally positively skewed (predominantly reflecting the heterogeneous nature of housing, the positive skew in income distributions and the zero lower bound on transaction prices), the median is typically used rather than the mean. As no data on housing characteristics are required to calculate the median, a price index that tracks changes in the price of the median house sold from one period to the next can be easily constructed. Another attraction of median indices is that they are easy to understand.

4.2 An important drawback of simple median indices is that they will provide noisy estimates of price change. The set of houses actually traded in a period, or a sample thereof, is typically small and not necessarily representative of the total stock of housing. Changes in the mix of properties sold will therefore affect the sample median price much more than the median price of the housing stock. For example, think of a city with two regions, A and B, and that region A has more expensive houses than region B. Suppose that the median house sold in 2006 and 2008 comes from region A, while the median house in 2007 comes from region B. It follows that the median index could record a large rise from 2006 to 2007 and then a large fall from 2007 to 2008. Such an index would be a very poor indicator of what is actually happening in the housing market. Thus, a median (or mean) index will be a very inaccurate guide to price change when there is substantial change in the composition of houses sold between periods. If there is a correlation between turning points in house price cycles and compositional change, then a median could be especially misleading in periods when the premium on accuracy is highest.

4.3 A perhaps bigger problem than short-term noise is systematic error, or bias. A simple median index will be subject to bias when the quality of the housing stock changes over time. The median index will be upward biased if the average quality improves over the years. Bias can also arise if certain types of houses are sold more frequently than other types of houses and at the same time exhibit different price changes. For example, when higher quality houses sell more frequently and also rise in price faster than lower quality houses, a downward bias may result if the number of sales per type of house does not properly reflect the number of houses in stock. This is sometimes referred to as a sample selection problem. The fact that houses traded are usually a small and not necessarily representative part of the total housing stock can bias other property price index methods as well, including hedonic and repeat sales methods (to be discussed in Chapters 5 and 6).

Stratification

4.4 Post-stratification of a sample is a general technique for reducing sample selection bias. In the case of residential property price indices, stratification is the simplest tool for controlling for changes in the composition or “quality mix” of the properties sold. The method is therefore also known as mix adjustment. Stratification is also needed if users desire price indices for different housing market segments.

4.5 Stratification is nothing else than separating the total sample of houses into a number of sub-samples or strata. After constructing a measure of the change in the central tendency for each stratum, such as a mean or median price index, the aggregate mix-adjusted RPPI is typically calculated as a weighted average of indices for each stratum. With M different strata, the mix-adjusted index, as calculated in practice in various countries, can be written in mathematical form as follows:

\[P_{\text{mix}} = \sum_{m=1}^{M} w_m P_{m} \]

where \(P_{m} \) is the index for stratum \(m \) which compares the mean (median) price in the current or comparison period \(t \) with the mean (median) price in an earlier or base period \(0 \), and where \(w_m \) denotes the weight of stratum \(m \). The weights are value shares pertaining to the strata. They refer to the base period, which is usually a year (whereas the comparison periods may be months or quarters). For practical reasons, the weights are often kept fixed for several years, but keeping weights fixed for a long time is generally not good practice. More details on aggregation and weighting issues in this context are provided below.

4.6 Which type of value weights is used, depends on the target index that the RPPI is supposed to estimate. If the purpose is to track the price change of the housing stock then obviously stock-weights – the stock value shares of the strata – should be used. If, on the other hand, the target is a sales or acquisitions RPPI, then sales (expenditure) weights should be applied. (*)

4.7 The effectiveness of stratification will depend upon the stratification variables used because a mix-adjusted measure only controls for compositional change across the various groups. For example, if house sales are separated solely according to their location, a mix-adjusted index will control for changes in the mix of property types across the defined locations. But the mix-adjusted measure will not

(*) The house price indices compiled in the EU as part of a Eurostat pilot study are examples of such acquisitions indices (see Makaronidis and Hayes, 2006 or Eurostat, 2010).
account for any changes in the mix of property types sold that are unrelated to location. Also, a mix-adjusted index does not account for changes in the mix of properties sold within each subgroup, in this case changes in the mix of properties sold within the boundaries of each location.

4.8 Very detailed stratification according to housing characteristics such as size of the structure, plot size, type of dwelling, location and amenities will increase homogeneity and thus reduce the quality-mix problem, although some quality mix changes will most likely remain. There is, however, a tradeoff to be considered. Increasing the number of strata reduces the average number of observations per stratum, and a very detailed stratification might raise the standard error of the overall RPPI. Needless to say, a detailed stratification scheme can be constructed only if the strata-defining characteristics are available for all sample data. Another potential practical problem is that it might be difficult to obtain accurate data on the (stock) weights for small subgroups.

4.9 When using only physical and locational stratification variables, like those mentioned above, then the stratification method does not control for quality changes of the individual properties. By quality changes we mean the effect of renovations and remodeling done to the properties in combination with depreciation of the structures. This can also be called “net depreciation”. Depreciation obviously depends on the age of the structure, although depreciation rates may differ across different types of dwellings or even across different locations. This is why age of the structure was listed in Chapter 3 as one of the most important price determining quality attributes. Consequently, stratifying according to age class may help reduce the problem of quality change.

4.10 Introducing age class as another stratification variable will further reduce the average number of observations per stratum and may give rise to unreliable estimates of price changes. Under these circumstances, hedonic regression techniques – which are discussed in Chapter 4 – will generally work better than stratification. As mentioned earlier, some sort of hedonic regression method will also be needed to decompose the overall RPPI into land and structures components if this is required for any of the purposes discussed in Chapter 2. Such a decomposition cannot be provided by stratification methods.

4.11 Mix-adjusted RPPIs have been compiled by numerous statistical offices and other government agencies, including the UK Department of the Environment (1982) and the Australian Bureau of Statistics (ABS, 2006). While mix adjustment has received relatively little attention in the academic literature, there is a growing body of work on market segmentation using statistical techniques like cluster analysis and factor analysis; see e.g. Dale-Johnson (1982), Goodman and Thibodeau (2003), and Thibodeau (2003). These techniques could in principle be used to define housing sub-markets, which could subsequently be used as strata for the construction of a mix-adjusted RPPI. The Australian Bureau of Statistics experimented with this approach (ABS, 2005).

4.12 Prasad and Richards (2006) (2008) proposed a novel stratification method and tested it on an Australian data set. They grouped together suburbs according to the long-term average price level of dwellings in those regions, rather than just clustering smaller geographic regions into larger regions. Their method of stratification was specifically designed to control for what may be the most important form of compositional change, namely changes in the proportion of houses sold in higher- and lower-priced regions in any period. Note that they used median price indices at the stratum level. McDonald and Smith (2009) followed-up on this study and constructed a similar stratified median house price measure for New Zealand.

Aggregation and Weighting Issues

First-stage aggregation

4.13 Stratification involves a two-stage procedure: price indices are compiled at the stratum level, which are then aggregated across the various strata. As was mentioned above, median strata indices have typically been used, in particular because they will often be more stable than the corresponding mean indices. Yet, we will focus on means rather than medians. Conventional index number theory deals with aggregation issues, in this case aggregation of house price observations within strata. Unlike the median, means are aggregator functions, which link up with index number theory. The question then arises: what kind of mean should be taken?

4.14 The CPI Manual (2004) makes recommendations about how to construct price indices at the first stage of aggregation if information on quantities is unavailable and then at the second stage of aggregation when both price and value (or quantity) information is available. At the first stage of aggregation, Chapter 20 in the CPI Manual generally recommends using the unweighted geometric mean or

(1) A general rule is that stratification according to the variable of interest should not be used since that can lead to biased results. The study variable used by Prasad and Richards (2006) (2008) is (long-term) house price change, not house price level, so their stratification method could perhaps be defended. However, little is known about the statistical properties of this type of stratification index and it would be advisable to investigate the issue of potential bias before producing such an index.
Jevons index to aggregate individual price quotations into an index. However, this general advice is not applicable in the present context.

4.15 If the aim is to construct a price index for the sales of residential properties, the appropriate concept of (elementary) price in some time period \(t \) for a homogeneous stratum or cell in the stratification scheme is a unit value. Because each sale of a residential property comes with its own quantity, which is equal to one, the corresponding quantity for that cell is the simple sum of the properties transacted in period \(t \). We can formally describe this as follows. Suppose that in period \(t \) there are \(N(t,m) \) property sales observed in a particular cell \(m \), with the selling price (value) of property \(n \) equal to \(V_n^t \) for \(n = 1, ..., N(t,m) \). Then the appropriate price and quantity for cell \(m \) in period \(t \) are:

\[
P_n^t = \sum_{n=1}^{N(t,m)} V_n^t / N(t,m) \quad (4.2)
\]

\[
Q_n^t = N(t,m) \quad (4.3)
\]

This narrowly defined unit value concept is actually recommended in the CPI Manual (2004; 356). If the stratification scheme leads to cells that are not sufficiently narrow defined, then of course some unit value bias may arise, which is equivalent to saying that some quality mix bias may remain.(1)

Second-stage aggregation

4.16 The next issue to be resolved is: what index number formula should be used to aggregate the elementary prices and quantities into one overall RPPI? The CPI Manual discusses this choice of formula issue at great length. A number of index number formulae are recommended but discusses this choice of formula issue at great length. A good overall choice appears to be the Fisher ideal index (4) and (5):

\[
P_r^t (P^t, P^s, Q^t) = \frac{\sum_{m=1}^{M} P_m^t Q_m^t}{\sum_{m=1}^{M} P_m^s Q_m^t} \quad (4.4)
\]

\[
Q_n^t = N(t,m) \quad (4.3)
\]

The Fisher price index for period \(t \) relative to period \(s \), \(P_r^t \), can be defined as the geometric mean of (4.4) and (4.5):

\[
P_r^t (P^t, P^s, Q^t, Q^s) = [P_r^t (P^t, P^s, Q^t) \times P_r^s (P^s, P^t, Q^s)]^{1/2} \quad (4.6)
\]

Recall that all the quantities occurring in these three formulas are numbers of transactions; that is, numbers of observed prices. Thus, for calculating a Laspeyres, Paasche, or Fisher price index one needs the same information.

4.18 The Laspeyres, Paasche and Fisher price indices defined by equations (4.4), (4.5) and (4.6) are fixed base indices. For example, if there are 3 periods of sales data, including the base period 0, then the Fisher formula (4.6) would generate the following index number series for those 3 periods:

\[
1; P_r^0 (P^0, P^1, Q^0, Q^1), P_r^0 (P^0, P^2, Q^0, Q^2) \quad (4.7)
\]

Chaining

4.19 An alternative to the fixed base method is the use of chaining. The chain method uses the data of the last two periods to calculate a period to period chain link index which is used to update the index level from the previous period. Chaining would, for example, generate the following Fisher index number series for the 3 periods:

\[
1; P_r^0 (P^0, P^1, Q^0, Q^1), P_r^0 (P^0, P^1, Q^0, Q^1) \quad (4.8)
\]

4.20 The next issue to be discussed is whether RPPIs should be constructed by using fixed base or chain indices. Both the System of National Accounts and the CPI Manual recommend the use of chain indices provided that the underlying price data have reasonably smooth trends.(5) On the other hand, if there is a great deal of variability in the data, particularly when prices bounce erratically around a trend, the use of fixed base indices is recommended. Property price changes tend to be fairly smooth,(7) so it is likely that chained indices will work well in many cases. However, more experimentation with actual data is

(1) In practice, crude stratification according to region and type of dwelling is often used. The stratification method according to price bands proposed by Prasad and Richards (2008), could be useful to mitigate against unit value bias. See Balk (1998) (2008; 72-74), Silver (2009a; 2009b; 2010), and Dewert and von der Lippe (2010) for more general discussions of unit value bias.

(2) See CPI Manual (2004; Chapters 15-18) for alternative justifications for the use of the Fisher formula.

(4) Although prices do not bounce around erratically in the real estate context, quantities do exhibit considerable variability, particularly if there are a large number of cells in the stratification setup with a limited number of observations in each cell. There is also a considerable amount of seasonal variation in quantities; i.e., sales of residential properties fall off dramatically during the winter months of the year.
required in order to give definitive advice on this issue. There may also be seasonal variation in house prices as the example for the Dutch town of “A” presented below, suggests. In such cases too, one should be careful with using chain indices.

Stock RPPIs

4.21 The above discussion was on the construction of a price index for the sales of residential properties when using a stratification method. But how should an RPPI be constructed for the stock of residential properties? Assuming that, for each cell \(m \), the properties sold are random (or ‘representative’) selections from the stock of dwelling units defined by cell \(m \), the period \(t \) unit value prices \(P_{m}^{*} \) defined by (4.2) can still be used as (estimates of the) cell prices for a stock RPPI. The quantities \(Q_{m}^{*} \) defined by (4.3) are, however, no longer appropriate; they need to be replaced by (estimates of) the number of dwelling units of the type defined by cell \(m \) that are in the reference stock at time \(t \), say \(Q_{m}^{*} \), for \(m = 1, ..., M \). With these population quantity weights, the rest of the details of the index construction are the same as was the case for the sales RPPI.

4.22 To compile stock weights, it will be necessary to have a periodic census of the housing stock with enough details on the properties so that it can be decomposed into the appropriate cells in the stratification scheme for a base period. If information on new house construction and on demolitions is available in a timely manner, then the census information can be updated and estimates for the housing stock by cell \(m \), the period \(t \) unit value prices \(P_{m}^{*} \) can be made in a timely manner. The stock RPPI can be constructed using a (chained) Fisher index as was the case for the sales RPPI. On the other hand, if timely data on new construction and demolitions is lacking, it will only be possible to construct a fixed base Laspeyres index using quantity data from the last available housing census (in say period 0), \(Q^{*} = [Q_{1}^{*}, ..., Q_{M}^{*}] \), until information from a new housing census is made available (in say period \(T \)). The Laspeyres stock RPPI thus is

\[
P_{m}^{**}(P^{0}, P, Q^{*}) = \frac{\sum_{m=1}^{M} P_{m}^{*} Q_{m}^{*}}{\sum_{m=1}^{M} P_{m}^{*} Q_{m}^{*}} \tag{4.9}
\]

4.23 In Chapter 3 it was mentioned that for some purposes it is useful to have a stock RPPI for Owner Occupied Housing, i.e. excluding rented homes. The construction of such an index proceeds in the same way as for the construction of an RPPI for the entire housing stock except that the cells in the stratification scheme are now restricted to owner occupied dwellings. This will be possible if the periodic housing census collects information on whether each dwelling unit is owned or rented.

4.24 It should be noted that the construction of a stratified (stock or sales) RPPI becomes more complex when some of the cells in the stratification scheme are empty for some periods. At the end of this chapter, where an empirical example using data on housing sales for the Dutch town of “A” is presented, a matched-model approach will be outlined that can be used in case some cells are empty.

Main Advantages and Disadvantages

4.25 We will summarize the main advantages and disadvantages of the stratified median or mean approach. The main advantages are:

- Depending on the choice of stratification variables, the method adjusts for compositional change of the dwellings.
- The method is reproducible, conditional on an agreed list of stratification variables.
- Price indices can be constructed for different types and locations of housing.
- The method is relatively easy to explain to users.

4.26 The main disadvantages of the stratified median or mean method are:

- The method cannot deal adequately with depreciation of the dwelling units unless age of the structure is a stratification variable.
- The method cannot deal adequately with units that have undergone major repairs or renovations (unless renovations are a stratification variable).
- The method requires information on housing characteristics so that sales transactions can be allocated to the correct strata.
- If the classification scheme is very coarse, compositional changes will affect the indices, i.e., there may be some unit value bias in the indices.
- If the classification scheme is very fine, the cell indices may be subject to a considerable amount of sampling variability due to small sample sizes or some cells may be empty for some periods causing index number difficulties.

4.27 An overall evaluation of the stratification method is that it can be satisfactory if:

- an appropriate level of detail is chosen;
- age of the structure is one of the stratification variables, and
- a decomposition of the index into structure and land components is not required.
Stratification can be interpreted as a special case of regression.\(^{(9)}\) Chapter 5 discusses this more general technique, known as hedonic regression when applied to price index construction and quality adjustment.

An Example Using Dutch Data for the Town of “A”

4.28 This chapter will be concluded by a worked example for the construction of a stratified index using data on sales of detached houses for a small town (the population is around 60,000) in the Netherlands, town “A”, for 14 quarters, starting in the first quarter of 2005 and ending in the second quarter of 2008. The same data set will be exploited in Chapters 5, 6, 7 and 8 to illustrate the other methods for constructing house price indices and the numerical differences that can arise in practice.\(^{(9)}\)

4.29 A dwelling unit has a number of important price determining characteristics:

• The land area of the property;
• The floor space area of the structure; i.e., the size of the structure that sits on the land underneath and surrounding the structure;
• The age of the structure; this determines (on average) how much physical deterioration or depreciation the structure has experienced;
• The amount of renovations that have been undertaken for the structure;
• The location of the structure; i.e., its distance from amenities such as shopping centers, schools, restaurants and workplace locations;
• The type of structure; i.e., single detached dwelling unit, row house, low rise apartment or high rise apartment or condominium;
• The type of construction used to build the structure;
• Other special price determining characteristics that are different from “average” dwelling units in the same general location such as swimming pools, air conditioning, elaborate landscaping, the height of the structure or views of oceans or rivers.

The variables used in this study can be described as follows:

• \(V_t\) is the selling price of property \(n\) in quarter \(t\) in Euros;
• \(L_{tn}\) is the area of the plot for the sale of property \(n\) in quarter \(t\) in meters squared;
• \(S_{tn}\) is the living space area of the structure for the sale of property \(n\) in quarter \(t\) in meters squared;
• \(A_{tn}\) is the approximate age (in decades) of the structure for property \(n\) in quarter \(t\).

4.30 It can be seen that not all of the price determining characteristics listed above were used in the present study. In particular, the last five sets of characteristics of the property were neglected. There is an implicit assumption that quarter to quarter changes in the amount of renovations that have been undertaken for the structures, the location of the house, the type of structure, the type of construction and any other price determining characteristics of the properties sold in the quarter did not change enough to be a significant determinant of the average price for the properties sold once changes in land size, structure size and the age of the structures were taken into account.\(^{(10)}\)

4.31 The determination of the values for the age variable \(A_t\) needs some explanation. The original data were coded as follows: if the structure was built in 1960-1970, then the observation was assigned the decade indicator variable \(BP = 5\); 1971-1980, \(BP=6\); 1981-1990, \(BP=7\); 1991-2000, \(BP=8\); 2001-2008, \(BP=9\). The age variable in this study was set equal to 9 - BP. For a recently built structure \(n\) in quarter \(t\), \(A_t = 0\). Thus, the age variable gives the (approximate) age of the structure in decades.

4.32 Houses which were older than 50 years at the time of sale were deleted from the data set. Two observations which had unusually low selling prices (36,000 and 40,000 Euros) were deleted as were 28 observations which had land areas greater than 1200 m\(^2\). No other outliers were deleted from the sample. After this cleaning of the data, we were left with 2289 observations over the 14 quarters in the sample, or an average of 163.5 sales of detached dwelling units per quarter. The overall sample mean selling price was 190,130 Euros, whereas the median price was 167,500 Euros. The average plot size was 257.6 m\(^2\) and the average size of the structure (living space area) was 127.2 m\(^2\). The average age of the properties sold was approximately 18.5 years.

4.33 The stratification approach to constructing a house price index is conceptually very simple: for each of the important price explaining characteristic, divide up the sales into relatively homogeneous groups. Thus in the present case, sales were classified into 45 groups or cells, consisting of 3 groupings for the land area \(L\), 3 groupings...
for the structure area S and 5 groups for the age A (in decades) of the structure ($3 \times 5 = 15$ separate cells). Once quarterly sales were classified into the 45 groupings of sales, the sales within each cell in each quarter were summed and then divided by the number of units sold in that cell in order to obtain unit value prices, the cell prices $P_{i,t}$. These unit values were then combined with the number of units sold in each cell, the $Q_{i,t}$, to form the usual p’s and q’s that can be inserted into a bilateral index number formula, like the Laspeyres, Paasche and Fisher ideal formulae defined by (4.4)-(4.6) above, yielding a stratified index of house prices of each of these types. However, since there are only 163 or so observations for each quarter and 45 cells to fill, each cell had only an average of 3 or so observations in each quarter, and some cells were empty for some quarters. This problem will be addressed subsequently.

4.34 How should the size limits for the L and S groupings be chosen? One approach would be to divide the range of L and S by three and create three equal size cells. However, this approach leads to a large number of observations in the middle cells. In the present study, size limits were therefore chosen such that roughly 50% of the observations would fall into the middle sized categories and roughly 25% would fall into the small and large categories. For the land size variable L, the cutoff points chosen were 160 m^2 and 300 m^2, while for the structure size variable S, the cutoff points chosen were 110 m^2 and 140 m^2. Thus if $L < 160 m^2$, then the observation fell into the small land size cell; if $160 m^2 \leq L < 300 m^2$, then the observation fell into the medium land size cell and if $300 m^2 \leq L$, then the observation fell into the large land size cell. The resulting sample probabilities for falling into these three L cells over the 14 quarters were .24, .51 and .25 respectively. Similarly, if $S < 110 m^2$, the observation fell into the small structure size cell; if $110 m^2 \leq S < 140 m^2$, then the observation fell into the medium structure size cell and if $140 m^2 \leq S$, then the observation fell into the large structure size cell.

The resulting sample probabilities for falling into these three S cells over the 14 quarters were .21, .52 and .27 respectively.

4.35 As mentioned earlier, the data that were used did not have an exact age for the structure; only the decade when the structure was built was recorded. So there was no possibility of choosing exact cutoff points for the age of the structure. $A = 0$ corresponds to houses that were built during the years 2001-2008; $A = 1$ for houses built in 1991-2000; $A = 2$ for houses built in 1981-1990; $A = 3$ for houses built in 1971-1980; and $A = 4$ for houses built in 1961-1970. The resulting sample probabilities for falling into these five cells over the 14 quarters were .15, .32, .21, .20 and .13 respectively. See Table 4.1 for the sample joint probabilities of a house sale belonging to each of the 45 cells.

4.36 There are several points of interest to note about Table 4.1:

- There were no observations for houses built during the 1960s ($A = 4$) which had a small lot ($L = \text{small}$) and a large structure ($S = \text{large}$), so this cell is entirely empty;
- There are many cells which are almost empty; in particular the probability of a sale of a large house is very low as is the probability of a sale of a small plot with a large house;\(^{(*)}\)
- The "most representative model" sold over the sample period corresponds to a mediumsized lot, a medium sized structure and a house that was built in the 1990s ($A = 1$). The sample probability of a house sale falling into this highest probability cell is 0.09262.

\(^{(1)}\) The international manuals on price measurement recommend this unit value approach to the construction of index numbers at the first stage of aggregation; see CPI Manual (2004), PPI Manual (2004), and XMPI Manual (2009). However, the unit value aggregation procedure takes place over homogenous items and this assumption may not be fulfilled in the present context, since there is a fair amount of variability in L, S and A within each cell. But since there are only a small number of observations in each cell for the data set under consideration, it would be difficult to introduce more cells to improve homogeneity since this would lead to an increased number of empty cells and a lack of matching for the cells.

\(^{(2)}\) Thus lot size and structure size are positively correlated with a correlation coefficient of 0.659. Both L and S are fairly highly correlated with the selling price variable P: the correlation between P and L is 0.8234 and between P and S is 0.8100. These high correlations lead to multicollinearity problems in the hedonic regression models to be considered later.

<table>
<thead>
<tr>
<th>(L)</th>
<th>(S)</th>
<th>(A = 0)</th>
<th>(A = 1)</th>
<th>(A = 2)</th>
<th>(A = 3)</th>
<th>(A = 4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>small</td>
<td>small</td>
<td>0.00437</td>
<td>0.02665</td>
<td>0.01660</td>
<td>0.02053</td>
<td>0.02097</td>
</tr>
<tr>
<td>medium</td>
<td>small</td>
<td>0.00349</td>
<td>0.02840</td>
<td>0.01966</td>
<td>0.01092</td>
<td>0.03888</td>
</tr>
<tr>
<td>large</td>
<td>small</td>
<td>0.00087</td>
<td>0.00175</td>
<td>0.00044</td>
<td>0.00218</td>
<td>0.00612</td>
</tr>
<tr>
<td>small</td>
<td>medium</td>
<td>0.01223</td>
<td>0.00524</td>
<td>0.04281</td>
<td>0.02053</td>
<td>0.00699</td>
</tr>
<tr>
<td>medium</td>
<td>medium</td>
<td>0.03277</td>
<td>0.09262</td>
<td>0.08869</td>
<td>0.07907</td>
<td>0.02141</td>
</tr>
<tr>
<td>large</td>
<td>medium</td>
<td>0.00786</td>
<td>0.002315</td>
<td>0.01005</td>
<td>0.01442</td>
<td>0.01398</td>
</tr>
<tr>
<td>small</td>
<td>large</td>
<td>0.00306</td>
<td>0.00218</td>
<td>0.00175</td>
<td>0.00568</td>
<td>0.00000</td>
</tr>
<tr>
<td>medium</td>
<td>large</td>
<td>0.03145</td>
<td>0.03495</td>
<td>0.00786</td>
<td>0.02097</td>
<td>0.00306</td>
</tr>
<tr>
<td>large</td>
<td>large</td>
<td>0.04893</td>
<td>0.05461</td>
<td>0.02315</td>
<td>0.02490</td>
<td>0.01660</td>
</tr>
</tbody>
</table>

Source: Authors’ calculations based on data from the Dutch Land Registry.
4.37 The average selling price of the representative house, falling into the medium L, medium S and $A = 1$ category, is graphed in Figure 4.1 along with the overall sample mean and median price in each quarter. These average prices have been converted into indices which start at 1 for quarter 1, which is the first quarter of 2005. It should be noted that these three house price indices are rather variable.

4.38 Some additional indices are plotted in Figure 4.1, including a fixed base matched model Fisher index and a chained matched model Fisher price index. It is necessary to explain what a “matched model” index in this context means. If at least one house was sold in each quarter for each of the 45 cells, the ordinary Laspeyres, Paasche and Fisher price indices comparing the prices of quarter t to those of quarter s would be defined by equations (4.4)-(4.6) respectively, where $M = 45$. This algebra is applicable to the situation where there are transactions in all cells for the two quarters being compared. But for the present data set, on average only about 30 out of the 45 categories can be matched across any two quarter, and the formulae (4.4)-(4.6) need to be modified in order to deal with this lack of matching problem. Thus, when considering how to form an index number comparison between quarters s and t, define the set of cells m that have at least one transaction in each of quarters s and t as the set $S(s,t)$. Then the matched model counterparts, P_M^s, P_M^t, and P_M^s, to the regular Laspeyres, Paasche and Fisher indices between quarters s and t given by (4.4), (4.5) and (4.6) are defined as follows: (14)

\[
P_M^s = \frac{\sum_{m \in S(s,t)} P_M^s Q_M^s}{\sum_{m \in S(s,t)} P_M^s Q_M^s}
\]

In Figure 4.1, the Fixed Base Fisher index is the matched model Fisher price index defined by (4.12), where the base period s is kept fixed at quarter 1; i.e., the indices $P_{MFP}^{1,1}$, $P_{MFP}^{1,2}$, $P_{MFP}^{1,1}$, $P_{MFP}^{1,2}$, $P_{MFP}^{2,1}$, $P_{MFP}^{1,2}$, $P_{MFP}^{2,1}$, $P_{MFP}^{2,2}$, $P_{MFP}^{1,1}$, $P_{MFP}^{1,4}$, $P_{MFP}^{2,1}$, $P_{MFP}^{2,4}$. Notice that the Fixed Base and Chained (matched model) Fisher indices are quite close to each other and are much smoother than the corresponding Mean, Median and Representative Model indices. (14) The data for these 5 series plotted in Figure 4.1 are listed in Table 4.2.

4.39 The matched model Fisher indices must be regarded as being more accurate than the other indices which use only a limited amount of the available price and quantity information. As the trend of the Fisher indices is fairly smooth, the chained Fisher index should be preferred over the fixed base Fisher index, following the advice given in Hill (1988) (1993) and in the CPI Manual (2004). Recall also that there is no need to use Laspeyres or Paasche indices in this situation since data on sales of houses contains both value and quantity information. Under these conditions, Fisher indices are preferred over the Laspeyres and Paasche indices (which do not use all of the available price and quantity information for the two periods being compared).
Table 4.2. Matched Model Fisher Chained and Fixed Base Price Indices, Mean, Median and Representative Model Price Indices

<table>
<thead>
<tr>
<th>Quarter</th>
<th>(P_{FCH})</th>
<th>(P_{FBB})</th>
<th>(P_{Mean})</th>
<th>(P_{Median})</th>
<th>(P_{Represent})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.00000</td>
<td>1.00000</td>
<td>1.00000</td>
<td>1.00000</td>
<td>1.00000</td>
</tr>
<tr>
<td>2</td>
<td>1.02396</td>
<td>1.02396</td>
<td>1.02003</td>
<td>1.05806</td>
<td>1.04556</td>
</tr>
<tr>
<td>3</td>
<td>1.07840</td>
<td>1.06815</td>
<td>1.04693</td>
<td>1.02258</td>
<td>1.03119</td>
</tr>
<tr>
<td>4</td>
<td>1.04081</td>
<td>1.04899</td>
<td>1.05067</td>
<td>1.03242</td>
<td>1.04083</td>
</tr>
<tr>
<td>5</td>
<td>1.04083</td>
<td>1.04444</td>
<td>1.04878</td>
<td>1.04839</td>
<td>1.04564</td>
</tr>
<tr>
<td>6</td>
<td>1.05754</td>
<td>1.06676</td>
<td>1.13679</td>
<td>1.17581</td>
<td>1.09792</td>
</tr>
<tr>
<td>7</td>
<td>1.07340</td>
<td>1.07310</td>
<td>1.06490</td>
<td>1.06935</td>
<td>1.01259</td>
</tr>
<tr>
<td>8</td>
<td>1.06706</td>
<td>1.07684</td>
<td>1.07056</td>
<td>1.10000</td>
<td>1.10481</td>
</tr>
<tr>
<td>9</td>
<td>1.08950</td>
<td>1.06828</td>
<td>1.07685</td>
<td>1.05806</td>
<td>1.03887</td>
</tr>
<tr>
<td>10</td>
<td>1.11476</td>
<td>1.11891</td>
<td>1.16612</td>
<td>1.16048</td>
<td>1.07922</td>
</tr>
<tr>
<td>11</td>
<td>1.12471</td>
<td>1.12196</td>
<td>1.08952</td>
<td>1.06290</td>
<td>1.07217</td>
</tr>
<tr>
<td>12</td>
<td>1.10483</td>
<td>1.11321</td>
<td>1.09792</td>
<td>1.10323</td>
<td>1.03870</td>
</tr>
<tr>
<td>13</td>
<td>1.10450</td>
<td>1.11074</td>
<td>1.10824</td>
<td>1.12903</td>
<td>1.12684</td>
</tr>
<tr>
<td>14</td>
<td>1.11189</td>
<td>1.10577</td>
<td>1.12160</td>
<td>1.10323</td>
<td>1.08587</td>
</tr>
</tbody>
</table>

Source: Authors’ calculations based on data from the Dutch Land Registry
4.40 Since there is a considerable amount of heterogeneity in each cell of the stratification scheme, there is the strong possibility of some unit value bias in the matched model Fisher indices. However, if a finer stratification were used, the amount of matching would drop dramatically. Already, with the present stratification, only about 2/3 of the cells could be matched across any two quarters. There is a trade-off between having too few cells with the possibility of unit value bias and having a more detailed stratification scheme but with a much smaller degree of matching of the data within cells across the two time periods being compared.

4.41 Looking at Table 4.2 and Figure 4.1, it can be seen that the chained Fisher index shows a drop in house prices during the fourth quarters of 2005, 2006, and 2007. There is a possibility that house prices drop for seasonal reasons in the fourth quarter of a year. In order to deal with this possibility, in the next section a rolling year matched model Fisher index will be constructed.

The Treatment of Seasonality for the Dutch Example

4.42 Assuming that each commodity in each season of the year is a separate “annual” commodity is the simplest and theoretically most satisfactory method for dealing with seasonal goods when the goal is to construct annual price and quantity indices. This idea can be traced back to Mudgett in the consumer price context and to Stone in the producer price context:

“The basic index is a yearly index and as a price or quantity index is of the same sort as those about which books and pamphlets have been written in quantity over the years.” Bruce D. Mudgett (1955; 97).

“The existence of a regular seasonal pattern in prices which more or less repeats itself year after year suggests very strongly that the varieties of a commodity available at different seasons cannot be transformed into one another without cost and that, accordingly, in all cases where seasonal variations in price are significant, the varieties available at different times of the year should be treated, in principle, as separate commodities.” Richard Stone (1956; 74-75).

Diewert (1983) generalized the Mudgett-Stone annual framework to allow for rolling year comparisons for 12 consecutive months of data with a base year of 12 months of data or for comparisons of 4 consecutive quarters of data with a base year of 4 consecutive quarters of data; i.e., the basic idea is to compare the current rolling year of price and quantity data to the corresponding data of a base year where the data pertaining to each season is compared. In the present context, we have in principle, price and quantity data for 45 classes of housing commodities in each quarter. If the sale of a house in each season is treated as a separate good, then there are 180 annual commodities.

4.43 For the first index number value, the four quarters of price and quantity data on sales of detached dwellings in the town of “A” (180 series) are compared with the same data using the Fisher ideal formula. Naturally, the resulting index is equal to 1. For the next index number value, the data for the first quarter of 2005 are dropped and the data pertaining to the first quarter of 2006 are appended to the data for quarters 2-4 of 2005. The resulting Fisher index is the second entry in the Rolling Year (RY) Matched Model series that is illustrated in Figure 4.2. However, as was the case with the chained and fixed base Fisher indices that appeared in Figure 4.1, not all cells could be matched using the rolling year methodology; i.e., some cells were empty in the first quarter of 2006 which corresponded to cells in the first quarter of 2005 which were not empty and vice versa. So when constructing the rolling year index , plots in Figure 4.2, the comparison between the rolling year and the data pertaining to 2005 was restricted to the set of cells which were non empty in both years; i.e., the Fisher rolling year indices plotted in Figure 4.2 are matched model indices. Unmatched models are omitted from the index number comparison.

4.44 The results are shown in Figure 4.2. Note that there is a definite downturn at the end of the sample period but that the downturns which showed up in Figure 4.1 for quarters 4 and 8 can be interpreted as seasonal downturns; i.e., the rolling year indices in Figure 4.2 did not turn down until the end of the sample period. Note further that the index value for observation 5 compares the data for calendar year 2006 to the corresponding data for calendar year 2005 and the index value for observation 9 compares the data for calendar year 2007 to the corresponding data for calendar year 2005; i.e., these index values correspond to Mudgett-Stone annual indices.

For additional theory and examples of this rolling year approach, see the chapters on seasonality in the CPI Manual (2004) and the PPI Manual (2004), Diewert (1998), and Balk (2008; 151-169). To justify the rolling year indices from the viewpoint of the economic approach to index number theory, some restrictions on preferences are required; details can be found in Diewert (1999; 56-61). It should be noted that weather and the lack of fixity of Easter can cause “seasons” to vary and a breakdown in the approach; see Diewert, Finkel and Artsev (2009). However, with quarterly data, these limitations of the rolling year index are less important.

In practice, as we have seen in the previous section, many of the cells are empty in each period.

There are 11 rolling year comparisons that can be made with the data for 14 quarters that are available. The numbers of unmatched or empty cells for rolling years 2, 3, ..., 11 are as follows: 50, 52, 55, 59, 60, 61, 65, 65, 66, 67. The relatively low number of unmatched or empty cells for rolling years 2, 3 and 4 is due to the fact that for rolling year 2, 3% of the data are matched, for rolling year 3, 2% of the data are matched and for rolling year 4, 4% of the data are matched.
4.45 It is a fairly labour intensive job to construct the rolling year matched model Fisher indices because the cells that are matched over any two periods vary with the periods. A short-cut method (which is less accurate) for seasonally adjusting a series, such as the matched model chained Fisher index P_{FCH} and the fixed base Fisher index P_{FBB} listed in Table 4.2, is to simply take a 4 quarter moving average of these series. The resulting rolling year series, P_{FCHMA} and P_{FBBMA} can be compared with the rolling year Mudgett-Stone-Diewert series P_{PRY}; see Figure 4.2. The data that corresponds to Figure 4.2 are listed in Table 4.3.

Figure 4.2. Rolling Year Fixed Base Fisher, Fisher Chained Moving Average and Fisher Fixed Base Moving Average Price Indices

![Graph showing price indices](image)

Source: Authors’ calculations based on data from the Dutch Land Registry

Table 4.3. Rolling Year Fixed Base Fisher, Fisher Chained Moving Average and Fisher Fixed Base Moving Average Price Indices

<table>
<thead>
<tr>
<th>Rolling Year</th>
<th>P_{FBBY}</th>
<th>P_{FCHMA}</th>
<th>P_{FBBMA}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.00000</td>
<td>1.00000</td>
<td>1.00000</td>
</tr>
<tr>
<td>2</td>
<td>1.01078</td>
<td>1.01021</td>
<td>1.01111</td>
</tr>
<tr>
<td>3</td>
<td>1.02111</td>
<td>1.01841</td>
<td>1.02156</td>
</tr>
<tr>
<td>4</td>
<td>1.02185</td>
<td>1.01725</td>
<td>1.02272</td>
</tr>
<tr>
<td>5</td>
<td>1.03453</td>
<td>1.02355</td>
<td>1.02936</td>
</tr>
<tr>
<td>6</td>
<td>1.04008</td>
<td>1.03572</td>
<td>1.03532</td>
</tr>
<tr>
<td>7</td>
<td>1.05287</td>
<td>1.04969</td>
<td>1.04805</td>
</tr>
<tr>
<td>8</td>
<td>1.06245</td>
<td>1.06159</td>
<td>1.05948</td>
</tr>
<tr>
<td>9</td>
<td>1.07135</td>
<td>1.07066</td>
<td>1.06815</td>
</tr>
<tr>
<td>10</td>
<td>1.08092</td>
<td>1.07441</td>
<td>1.07877</td>
</tr>
<tr>
<td>11</td>
<td>1.07774</td>
<td>1.07371</td>
<td>1.07556</td>
</tr>
</tbody>
</table>

Source: Authors’ calculations based on data from the Dutch Land Registry
4.46 It can be seen that a moving average of the chained and fixed base Fisher quarter to quarter indices, P_{PFCH} and P_{PFBF}, listed in Table 4.2, approximates the theoretically preferred rolling year fixed base Fisher index P_{FBBRY} fairly well. There are differences of up to 1% between the preferred rolling year index and the moving average index, however. Recall that the fixed base Fisher index compared the data of quarters 1 to 14 with the corresponding data of quarter 1. Thus the observations for, say, quarters 2 and 1, 3 and 1, and 4 and 1 are not as likely to be as comparable as the rolling year indices where data in any one quarter is always lined up with the data in the corresponding quarter of the base year. A similar argument applies to the moving average index P_{PFCHMA}, the comparisons that go into the links in this index are from quarter to quarter and they are unlikely to be as accurate as comparisons across the years for the same quarter. (*)

(*) The stronger is the seasonality, the stronger will be this argument in favour of the accuracy of the rolling year index. The strength of this argument can be seen if all house price sales for each cell turn out to be strongly seasonal, i.e., the sales for any given cell occur in only one quarter in each year. Quarter to quarter comparisons are obviously impossible in this situation but rolling year indices will be perfectly well defined.
Hedonic Regression Methods
Hedonic Modeling and Estimation

5.1 The hedonic regression method recognizes that heterogeneous goods can be described by their attributes or characteristics. That is, a good is essentially a bundle of (performance) characteristics. In the housing context, this bundle may contain attributes of both the structure and the location of the properties. There is no market for characteristics, since they cannot be sold separately, so the prices of the characteristics are not independently observed. The demand and supply for the properties implicitly determine the characteristics’ marginal contributions to the prices of the properties. Regression techniques can be used to estimate those marginal contributions or shadow prices. One purpose of the hedonic method might be to obtain estimates of the willingness to pay for, or marginal cost of producing, the different characteristics. Here we focus on the second main purpose, the construction of quality-adjusted price indices.

Hedonic Modeling

5.2 The starting point is the assumption that the price p'_{it} of property i in period t is a function of a fixed number, say K, characteristics measured by “quantities” z_{it}. With $T+1$ time periods, going from the base period 0 to period T, we have

$$p'_{it} = f(z_{it1}, ..., z_{itK}, \epsilon'_{it}) \quad (5.1)$$

where ϵ'_{it} is a random error term (white noise). In order to be able to estimate the marginal contributions of the characteristics using standard regression techniques, equation (5.1) has to be specified as a parametric model. The two best-known hedonic specifications are the fully linear model

$$p'_{it} = \beta'_i + \sum_{k=1}^{K} \beta_k z_{itk} + \epsilon'_{it} \quad (5.2)$$

and the logarithmic-linear model

$$\ln p'_{it} = \beta'_i + \sum_{k=1}^{K} \beta_k' z_{itk} + \epsilon'_{it} \quad (5.3)$$

where β'_i and β'_k are the intercept term and the characteristics parameters to be estimated. In both specifications the characteristics may be transformations, like logarithms, of continuous variables. In practice, many explanatory variables will be categorical rather than continuous and represented by a set of dummy variables which take the value of 1 if a property belongs to the category in question and the value of 0 otherwise.

5.3 For products such as high-tech goods, the log-linear model (5.3) is usually preferred, among other things because it most likely reduces the problem of heteroskedasticity (non-constant variance of the errors) as prices tend to be log-normally distributed (Diewert, 2003b). In the housing context, on the other hand, the linear model has much to recommend. In Chapter 3, the size of the structure and the size of the land it is built on were mentioned as two important price determining variables. Since the value of a property is generally equal to the sum of the price of the structure and the price of land, it can be argued that land and structures should be included in the model in a linear fashion, provided that the data are available. Chapter 8 will discuss this issue in more detail, including a decomposition of the hedonic price index into land and structures components. Unfortunately, not all data sources will contain information on lot and structure size. Lot size in particular may be lacking. When lot (or structure) size is not included as an explanatory variable, many empirical studies have found log-linear models to perform reasonably well.

5.4 The characteristics parameters β'_k in (5.2) and (5.3) are allowed to change over time. This is in line with the idea that housing market conditions determine the marginal contributions of the characteristics: when demand and supply conditions change, there is no a priori reason to expect that those contributions are constant (Pakes, 2003). Yet, it seems most likely that market conditions change gradually. Therefore, the simplifying assumption can confidently be made, perhaps only for the short term, that the characteristics parameters (but not the intercept term) are constant over time. In the log-linear case this would give rise to the following constrained version of (5.3):

$$\ln p'_{it} = \beta'_i + \sum_{k=1}^{K} \beta'_{ik} z_{itk} + \epsilon'_{it} \quad (5.4)$$

As will be seen below, the time dependent intercept terms (the β'_i) can be converted into a constant quality price index.

5.5 Suppose we have data on selling prices and characteristics for the samples $S(0), S(1), ..., S(T)$ of properties sold in periods $t = 0, ..., T$ with sizes $N(0), N(1), ..., N(T)$. Under the classic error assumptions, in particular a zero mean and constant variance, the parameters of the hedonic models (5.2) and (5.3) can be estimated by Ordinary Least Squares (OLS) regression on the sample data of each time period separately. The constrained version (5.4) can be estimated on the pooled data pertaining to all time periods, provided that dummy variables are included which indicate the time periods (leaving out one dummy to prevent perfect collinearity). The estimating equation for the constrained log-linear model (5.4), which is generally referred to as the time dummy variable hedonic model, thus becomes

$$\ln p'_{it} = \beta'_i + \sum_{r=1}^{R} \delta_r D'_{ir} + \sum_{k=1}^{K} \beta'_{ik} z_{itk} + \epsilon'_{it} \quad (5.5)$$

Footnote: The hedonic regression approach dates back at least to Count (1919) and Griliches (1961). Lancaster (1966) and Rosen (1974) laid down the conceptual foundations of the approach. Golwell and Dilmore (1999) argue that the first published hedonic study was a 1922 University of Minnesota master’s thesis on agricultural land values.
where the time dummy variable D_t has the value 1 if the observation comes from period t and 0 otherwise; a time dummy for the base period 0 is left out. Although unusual, it is also possible to specify a time dummy model with the untransformed price as the dependent variable. This specification will be considered in the empirical example given at the end of this chapter.

Some Practical Issues

5.6 An important issue is the choice of the set of explanatory variables included in the hedonic equation. If some relevant variables – characteristics that can be expected to affect the price of a property (listed in Chapter 3) – are excluded, then the estimated parameters of the included characteristics will suffer from omitted variables bias. The bias carries over to the predicted prices computed from the regression coefficients and to the hedonic indices. Each property can be viewed as a unique good, for a large part due to its location. But detailed information on location and neighbourhood can be hard to obtain (Case, Pollakowski, and Wachter, 1991). Other characteristics may be unavailable also and some could be difficult to measure directly. So it is fair to say that in practice some omitted variables bias will always be present when estimating a hedonic model for housing. The sign and magnitude of the bias, and its impact on the price index, are difficult to predict. The magnitude depends among other things on the correlation between the omitted and included variables.

5.7 The importance of location has led researchers to make use of longitude and latitude data of individual properties in hedonic regressions. This is usually achieved by constructing a matrix of distances between all properties in the data set and then using appropriate (though rather specialized) econometric methods to allow for spatial dependence in the estimated equation. Explicitly accounting for spatial dependence can ameliorate the omitted locational variables problem. Spatial dependence can be captured either in the regressors or the error term. The first approach, i.e., including location as an explanatory variable using geospatial data, is the most straightforward one. This can be done parametrically or nonparametrically, for example by making use of splines, as demonstrated by Hill, Melser and Reid (2010). For an elaborate discussion and a review of the literature on spatial dependence, the use of geospatial data, is the most straightforward one. This can be made use of longitude and latitude data of individual properties.

5.8 Multicollinearity is a well-known problem in hedonic regressions. A high correlation between some of the included variables increases the standard errors of the regression coefficients; the coefficients become unstable. Again, it is difficult to say a priori how this will affect hedonic indices. For some purposes, multicollinearity may not be too problematic. For example, if we are not so much interested in the values of the parameters but merely in the predicted prices to be used in the estimation of the overall quality-adjusted house price index, then the problem of multicollinearity should not be exaggerated. In this case it is better to include a relevant variable, even if this would cause multicollinearity, than leaving it out as the latter gives rise to omitted variables bias. But when the parameter values are of interest as such, for example when we are trying to decompose the property prices into land and structures components, then multicollinearity does pose problems. In Chapter 8 it will be shown that this is indeed a problem.

5.9 As with other methods, some data cleaning might be necessary. Obvious entry errors should be deleted. Yet a cautious approach is called for. Deleting outliers from a regression with the aim of producing more stable coefficients (hence, more stable price indices) is often arbitrary and could lead to biased estimates. The use of hedonics requires data on all characteristics included in the model. Unfortunately, partial non-response is present in many data sets. That is, the information on one or more characteristics may be missing for a part of the sample. Procedures have been developed to impute the missing data, but again it is important to avoid arbitrary choices that can have an impact on the results.

5.10 In the next two sections, the two main hedonic approaches, the time dummy approach and the imputations approach, to constructing quality-adjusted house price indices will be discussed. Without denying potential econometric problems, our focus will be on the use of least squares regression to estimate the models.

Time Dummy Variable Method

5.11 The time dummy variable approach to constructing a hedonic house price index has been used frequently in academic studies but not so much by statistical agencies. One advantage of this approach is its simplicity; the price index follows immediately from the estimated

(1) A related point is that the characteristics of each house in the sample should be available in real time. House characteristics can change over time (which is actually the reason why they are given a superscript for time t in the hedonic models above). Keeping the characteristics fixed implies that the hedonic price index would not be adjusted for such quality changes.

(2) Colwell (1998) proposed a nonparametric spatial interpolation method which seems well adapted to model land prices as a function of the property’s geographical two-dimensional coordinates.

(3) This method was originally developed by Court (1939; 109-111) as his hedonic suggestion number two. The terminology adopted by us is not uniformly employed in the real estate literature. For example, Crone and Varnes (1992) refer to the time dummy method as the “constrained hedonic” method, Gatzlaff and Ling (1994) call it the “explicit time-variable” method, while Hight, Dambrow and Simans (1995) name it the “varying parameter” method. Other terms also appear in the literature so that statements about the relative merits of different hedonic methods require careful interpretation.

(4) One advantage of this approach is its simplicity; the price index follows immediately from the estimated...
pooled time dummy regression equation (5.5). Running one overall regression on the pooled data of the samples $S(0), S(1), ..., S(T)$ relating to periods $t = 0, ..., T$ (with sizes $N(0), N(1), ..., N(T)$) yields coefficients $\hat{\beta}_k$, $\hat{\delta}_k$ ($t = 1, ..., T$) and $\hat{\beta}_k$ ($k = 1, ..., K$). The time dummy parameter shifts the hedonic surface upwards or downwards and measures the effect of “time” on the logarithm of price. Exponentiating the time dummy coefficients thus controls for changes in the quantities of the characteristics and provides a measure of quality-adjusted house price change between the base period 0 and each comparison period t. In other words, the time dummy index going from period 0 to period t is given by (5)

$$P^m_{0t} = \exp(\hat{\delta}_t)$$ (5.6)

5.12 Pooling cross-section data preserves degrees of freedom. The regression coefficients $\hat{\beta}_k$ will therefore generally have lower standard errors than the coefficients $\hat{\beta}_k$ that would be obtained by estimating model (5.19) separately on the data of the samples $S(0), S(1), ..., S(T)$. Although the increased efficiency can be seen as an advantage, it comes at an expense: the assumption of fixed characteristics parameters is a disadvantage of the time dummy hedonic method.

5.13 When using OLS, the time dummy hedonic index can be written as (see e.g. Diewert, Heravi and Silver, 2009; de Haan, 2010a)

$$P^m_{0t} = \prod_{s=0}^{s=t} \left(\frac{p_s}{p_0} \right)^{\hat{\beta}_s} \prod_{k=1}^{K} \left(\frac{p_k}{p_0} \right)^{\hat{\beta}_k} \exp\left[\sum_{k=1}^{K} \hat{\beta}_k (\bar{Z}_k^s - \bar{Z}_k^0) \right]$$ (5.7)

where $\bar{Z}_k^s = \sum_{i \in S(s)} z_{ik}^s / N(s)$ is the sample mean of characteristic k in period s ($s = 0, t$). Equation (5.7) tells us that the time dummy index is essentially the product of two factors. The first factor is the ratio of the geometric mean prices in the periods t and 0. The second factor, $\exp[\sum_{k=1}^{K} \hat{\beta}_k (\bar{Z}_k^s - \bar{Z}_k^0)]$, adjusts this ratio of raw sample means for differences in the average characteristics \bar{Z}_k^s and \bar{Z}_k^0; it serves as a quality-adjustment factor which accounts for both changes in the quality mix and quality changes of the individual properties (provided that all relevant quality-determining attributes are included in the hedonic model). Notice that the time dummy price index simplifies to the ratio of geometric mean prices if $\bar{Z}_k^s = \bar{Z}_k^0$, i.e. if the average characteristics in period t and period 0 happen to be equal.

5.14 Suppose for simplicity that the housing stock is constant, in the sense that there are no houses entering or exiting, and that the quality of the individual properties does not change. Suppose further that $S(0)$ and $S(t)$ are random or “representative” selections from the housing stock. In that case the time dummy method implicitly aims at a ratio of geometric mean prices for the total stock, which is equal to the geometric mean of the individual price ratios. (5) Although it is true that the target of measurement may be different for different purposes, it is difficult to see what purposes a geometric stock RPPI would meet. Arithmetic target RPPIs, such as an index that tracks the value of the fixed housing stock over time, seem to be more appropriate (see also Chapters 4 and 8).

5.15 The samples of houses traded, $S(0)$ and $S(t)$, may not be representative for the total housing stock (or for the total population of houses sold). A solution could be to weight the samples in order to make them representative. Running an OLS regression on the (pooled) weighted data set is equivalent to running a Weighted Least Squares (WLS) regression on the original data set. Under the assumption of a constant variance of the errors, econometric textbooks do not suggest the use of WLS since this will introduce heteroskedasticity. Note that a WLS time dummy method will still generate a geometric index, in this case a weighted one.

5.16 A better option than using WLS regressions could be to stratify the samples, run separate OLS regressions on the data of the different strata, and then explicitly weight the stratum-specific hedonic indices using stock (or sales) weights to construct an overall RPPI with an arithmetic structure at the upper level of aggregation. This stratified hedonic approach has several other advantages as well, as will be explained later.

5.17 A problem with the time dummy method is the revision that goes with it. If the time series is extended to $T + 1$ and new sample data is added, the characteristics coefficients will change. Consequently, the newly computed price index numbers for the periods $t = 1, ..., T$ will differ from those previously computed. (6) When additional data become available, the efficiency due to the pooling of data increases and better estimates can be made. This can actually be seen as a strength rather than a weakness of the method. On the other hand, statistical agencies and their users will most likely be reluctant to accept continuous revisions of previously published figures.

5.18 The multiperiod time dummy method therefore appears to be of limited use for the production of official house price indices although there are ways to deal with the problem of revisions. One way would be to estimate time dummy indices for adjacent periods $t-1$ and t and then multiply them to obtain a time series which is free of revisions. This high-frequency chaining has the additional advantage of relaxing the assumption of fixed parameters.
It is, however, not entirely without problems. Drift in the index can occur when the data exhibit systematic fluctuations such as seasonal fluctuations.\(^{(4)}\)

Characteristics Prices and Imputation Methods

5.19 In the second main approach to compiling a hedonic price index, separate regressions are run for all time periods and the index is constructed by making use of the predicted prices based on the regression coefficients. Because the implicit characteristics prices are allowed to vary over time, this method is more flexible than the time dummy variable method. Two variants can be distinguished: the *characteristics prices approach* and the *imputations approach*. It will be shown that, under certain circumstances, both approaches are equivalent. We will first discuss the characteristics prices approach.\(^{(5)}\)

Characteristics Prices Approach

5.20 To illustrate this approach, suppose as before that sample data are available on prices and relevant characteristics of houses sold in the base period 0 and each comparison period \(t\). We will first assume that the linear hedonic model (5.2) holds true and is estimated on the data of period 0 and period \(t\) separately. This yields regression coefficients \(\beta^0_s\) and \(\beta^t_s\) (\(s = 0, t\)). The predicted prices for each individual property are \(\hat{P}^0 = \hat{\beta}_0^0 + \sum_{k=1}^{K} \hat{\beta}_k^0 z_k^0\) and \(\hat{P}^t = \hat{\beta}_0^t + \sum_{k=1}^{K} \hat{\beta}_k^t z_k^t\). It is also possible to compute predicted period 0 and period \(t\) prices for a “standardized” property with fixed (quantities of) characteristics \(z_i^*\). The resulting estimated price relative is

\[
\frac{\hat{P}^t}{\hat{P}^0} = \frac{\hat{\beta}_0^t + \sum_{k=1}^{K} \hat{\beta}_k^t z_k^t}{\hat{\beta}_0^0 + \sum_{k=1}^{K} \hat{\beta}_k^0 z_k^0}
\]

(5.8)

Expression (5.8) is a quality-adjusted price index because the characteristics are kept fixed. But different values of \(z_i^*\) will give rise to different index numbers. So what would be the preferred choice?

5.21 Suppose that we were aiming at a sales-based RPPI. There are two natural choices for \(z_i^*\) in (5.8): the sample average characteristics of the base period, \(z_i^0\), and the sample averages of the comparison period \(t\) (\(t = 1, \ldots, T\)), \(z_i^t\). The usual solution in index number theory is to treat the resulting price indices – which are equally valid – in a symmetric manner by taking the geometric mean. Setting \(z_i^* = z_i^0\) in (5.8) generates a Laspeyres-type characteristics prices (CP) index:

\[
P_{CP}^0 = \frac{\hat{\beta}_0^0 + \sum_{k=1}^{K} \hat{\beta}_k^0 z_k^0}{\hat{\beta}_0^0 + \sum_{k=1}^{K} \hat{\beta}_k^0 z_k^0}
\]

(5.9)

Setting \(z_i^* = z_i^t\) in (5.8) yields a Paasche-type index:

\[
P_{CP}^t = \frac{\hat{\beta}_0^t + \sum_{k=1}^{K} \hat{\beta}_k^t z_k^t}{\hat{\beta}_0^t + \sum_{k=1}^{K} \hat{\beta}_k^t z_k^t}
\]

(5.10)

By taking the geometric mean of (5.9) and (5.10) the Fisher-type characteristics prices index is obtained:

\[
P_{CP}^F = \left(P_{CP}^0 P_{CP}^t \right)^{1/2}
\]

(5.11)

5.22 The characteristics prices method can also applied in combination with the log-linear model given by (5.3). Running separate regressions of this model on the sample data for periods 0 and \(t\) yields predicted prices (after exponentiating) \(\hat{P}^0_s = \exp(\hat{\beta}_0^0_s \exp[\sum_{k=1}^{K} \hat{\beta}_k^0_s z_k^0])\) and \(\hat{P}^t_s = \exp(\hat{\beta}_0^t_s \exp[\sum_{k=1}^{K} \hat{\beta}_k^t_s z_k^t])\). Similar to what was done in (5.8) for the linear model, prices can be predicted for a standardized house. Using the sample averages of the characteristics in the base period to define the standardized house, the geometric counterpart to the Laspeyres-type characteristics prices index (5.9) is found:

\[
P_{CP}^{0,\exp}(\hat{\beta}) = \frac{\exp(\hat{\beta}_0^0) \exp\left(\sum_{k=1}^{K} \hat{\beta}_k^0 z_k^0 \right)}{\exp(\hat{\beta}_0^0) \exp\left(\sum_{k=1}^{K} \hat{\beta}_k^0 z_k^0 \right)}
\]

(5.12)

The geometric counterpart to the Paasche-type hedonic index (5.10) is obtained by using the sample averages of the characteristics in the comparison period:

\[
P_{CP}^{t,\exp}(\hat{\beta}) = \frac{\exp(\hat{\beta}_0^t) \exp\left(\sum_{k=1}^{K} \hat{\beta}_k^t z_k^t \right)}{\exp(\hat{\beta}_0^t) \exp\left(\sum_{k=1}^{K} \hat{\beta}_k^t z_k^t \right)}
\]

(5.13)

\(^{(3)}\) An alternative approach would be the use of a moving window. For example, suppose we initially estimated a time dummy index on the data of twelve months. Next, we delete the data of the first month and add the data of the thirteenth month and estimate a time dummy index on this data set, and so on. By multiplying (chaining) the last month-to-month changes a non-reversed time series is obtained. For an application, see Shimizu, Nishimura and Watanabe (2010). In the example for the town of \(P^0\), given at the end of this chapter, drift does not seem to be a major problem; the moving window method gives much the same results as the multiperiod time dummy regression.

\(^{(5)}\) Again, the terminology differs between authors. For example, Crone and Voth (1992) and Knight, Dombrav and Sirmans (1995) refer to this approach as the “hedonic method” as opposed to the “constrained hedonic” or “varying parameter” method, what we have called the time dummy variable approach; while Cassell and Ling (1994) refer to it as the “strictly cross-sectional” method.
Taking the geometric mean of (5.12) and (5.13) yields

\[P^*_{t\text{Pr}} = \left(P^*_{t\text{LR}} P^*_{t\text{SR}} \right)^{1/2} \]

\[= \exp(\hat{\beta}_{it} - \hat{\beta}_{0it}) \exp \left[\sum_{k=1}^{K} (\hat{\beta}_{zk} - \hat{\beta}_{0zk}) z^w_{ik} \right] \]

(5.14)

where \(z^w_{ik} = (z^w_{0ik} + z^w_{1ik})/2 \) in (5.14) denotes the mean of the average characteristics in the base and comparison period.

5.23 If the target index is a stock-based rather than a sales-based RPPI, the two natural choices for the characteristics \(z^*_i \) in equation (5.8) would be the average stock characteristics of the base period and those of the comparison period. The first choice would produce a Laspeyres-type stock RPPI, the second choice a Paasche-type stock RPPI. Both indices measure the quality-adjusted value change of the housing stock, but the results will usually differ. Not only does the average quality of the housing stock change over time, the Laspeyres-type index ignores new properties that entered the housing market whereas the Paasche-type index does not take into account disappearing properties.

5.24 Of course the assumption of known stock averages for all property characteristics included in the hedonic model is unrealistic. In most situations we have to rely on estimates, i.e. on the sample averages \(\bar{z}^w_{0ik} \) and \(\bar{z}^w_{1ik} \) which are based on the same characteristics data that is used to estimate the hedonic equations. This leads to formulæ (5.9) and (5.10), or the geometric mean (5.11), which describe sales-based RPPIs. Once again we are reminded that sales RPPIs can be seen as estimators of stock RPPIs, provided that the samples are representative of the total stock. The latter is rather doubtful, however, and the usual approach is to stratify the samples and weight the estimated stratum indices using stock weights.

Hedonic Imputation Approach

5.25 The question arises how the characteristics prices method described above relates to the standard (matched-model) methodology to construct price indices. From an index number point of view we can look at the issue in the following way. The period \(t \) prices of properties sold in period \(0 \) cannot be observed and are “missing” because those properties, or at least the greater part, will not be resold in period \(t \). Similarly, the period 0 prices of the properties sold in period 0 are unobservable. To apply standard index number formulæ these “missing prices” must be imputed.\(^{[19]}\) Hedonic imputation indices do this by using predicted prices, evaluated at fixed characteristics, based on the hedonic regressions for all time periods.

| Page 54 |

Arithmetic Imputation Indices

5.26 The Laspeyres imputation index imputes period \(t \) prices for the properties belonging to the base period sample \(S(0) \), evaluated at base period characteristics to control for quality changes. Using the linear model (5.1), the imputed prices are \(\hat{p}^0_i(0) = \hat{\beta}_0^i + \sum_{k=1}^{K} \hat{\beta}_{zk}^i z_{ik} \) and the hedonic imputation Laspeyres index becomes

\[P^*_{\text{ml}} = \frac{\sum_{nk \in S(0)} \hat{p}^0_i(0)}{\sum_{nk \in S(0)} p^0_i} = \frac{\sum_{nk \in S(0)} \left[\hat{\beta}_0^i + \sum_{k=1}^{K} \hat{\beta}_{zk}^i z_{ik} \right]}{\sum_{nk \in S(0)} p^0_i} \]

\[= \frac{\hat{\beta}_0^i + \sum_{k=1}^{K} \hat{\beta}_{zk}^i z_{ik}}{\sum_{nk \in S(0)} p^0_i} \]

(5.15)

Notice that the quantity associated with each price is 1; basically, every house is unique and cannot be matched except through the use of a model.

5.27 The hedonic imputation Laspeyres index (5.15) is an example of a single imputation index in which the observed prices are left unchanged. It can be argued that it would be better to use a double imputation approach, where the observed prices are replaced by the predicted values. This is because biases in the period 0 and period \(t \) estimates resulting from omitted variables are likely to offset each other, at least to some degree; see e.g. Hill, 2011. Using \(\hat{p}^0_i = \hat{\beta}_0^i + \sum_{k=1}^{K} \hat{\beta}_{zk}^i z_{ik} \), the hedonic double imputation (DI) Laspeyres price index is

\[P^*_{\text{ml}} = \frac{\sum_{nk \in S(0)} \hat{p}^0_i(0)}{\sum_{nk \in S(0)} \hat{p}^0_i} = \frac{\sum_{nk \in S(0)} \left[\hat{\beta}_0^i + \sum_{k=1}^{K} \hat{\beta}_{zk}^i z_{ik} \right]}{\sum_{nk \in S(0)} \hat{p}^0_i} \]

\[= \frac{\hat{\beta}_0^i + \sum_{k=1}^{K} \hat{\beta}_{zk}^i z_{ik}}{\sum_{nk \in S(0)} \hat{p}^0_i} = P^*_{\text{ml}} \]

(5.16)

A comparison with equation (5.12) shows that, using the linear model, the double imputation index equals the Laspeyres-type characteristics prices index. This result does not depend on the estimation method. If we would use OLS regression to estimate the linear model, then the single imputation index would be equal to the double imputation index and also coincide with the characteristics prices index as in this case \(\sum_{nk \in S(0)} p^*_i = \sum_{nk \in S(0)} \hat{p}^0_i \), due to the fact that the hedonic model includes an intercept term so that the OLS regression residuals sum to zero.

5.28 The hedonic single imputation Paasche index imputes base period prices for the properties belonging to the period \(t \) sample \(S(t) \), evaluated at period \(t \) characteristics. Using again the linear model (5.1), these imputed prices

\[^{[19]}\] As noted earlier, the hedonic theory dates back at least to Court (1939; 108). Imputation was his hedonic suggestion number one. His suggestion was followed up by Gilleches (1971a; 59-60; 1971b; 8) and Triplett and McDonald (1977; 144). More recent contributions to the hedonic imputations literature include Dewrent (2003b), de Haan (2000; 2009; 2010a), Triplett (2004) and Dewrent; Heravi and Silver (2009). In a housing context the hedonic imputation method is discussed in detail by Hill and Melser (2006) and Hill (2011).
are given by \(\hat{p}_t^*(t) = \hat{\beta}_t^0 + \sum_{k=1}^t \hat{\beta}_k z_{k0} \). To save space we will only show the double imputation variant. Here, the observed (period \(t \)) prices are replaced by their model-based predictions \(\hat{p}_t^* = \beta_t + \sum_{k=1}^t \beta_k z_{k0} \). Thus, the hedonic double imputation Paasche price index is

\[
P_{\text{PAAS}}^{\text{DIP}} = \frac{\sum_{n=0}^{t-1} \hat{p}_n^*}{\sum_{n=0}^{t-1} p_n^*} = \frac{\sum_{n=0}^{t-1} \hat{\beta}_n + \sum_{k=1}^t \hat{\beta}_k z_{k0}}{\hat{\beta}_n + \sum_{k=1}^t \beta_k z_{k0}} \quad (5.17)
\]

which coincides with the Paasche-type characteristics prices index. If OLS regression is used, then (5.17) is equal to the single imputation Paasche index because in this particular case the numerator equals \(\sum_{n=0}^{t-1} P_n^0 \). It will then be unnecessary to estimate the hedonic equations for the comparison periods \(t = 1, \ldots, T \); estimating the base period hedonic equation to obtain the base period imputed values will suffice.

5.29 The hedonic double imputation Fisher index is found by taking the geometric mean of (5.16) and (5.17):

\[
P_{\text{PAAS}}^{\text{DIF}} = \left[P_{\text{PAAS}}^{\text{DIP}} \cdot P_{\text{PAAS}}^{\text{DIP}} \right]^{1/2} \quad (5.18)
\]

The above imputation indices can be given two interpretations. They can be viewed either as estimators of the quality-adjusted value change of the entire housing stock, i.e., as stock-based RPPIs, or as estimators of quality-adjusted sales-based RPPIs. Under the first interpretation, to produce approximately unbiased results, each sample should be a random or representative selection from the housing stock. Sample selection bias problems could be less severe under the second interpretation, although this depends on the sampling design.\(^{(1)}\)

Geometric Imputation Indices

5.30 The imputation approach can also be applied to geometric price index number formulae. Let us start with what might be called the geometric counterpart to the imputation Laspeyres price index (5.15). For reasons of “consistency” the imputations will now be computed using the log-linear hedonic model (5.3) instead of the linear model. The imputed period \(t \) prices for the properties belonging to the base period sample \(S(t) \), evaluated at base period characteristics, are \(\hat{p}_t(0) = \exp(\hat{\beta}_t) \exp(\sum_{k=1}^t \hat{\beta}_k z_{k0}) \). Hence, the double imputation unweighted geometric index, in which the base period prices are replaced by predicted values \(\hat{p}_t = \exp(\hat{\beta}_t) \exp(\sum_{k=1}^t \hat{\beta}_k z_{k0}) \), is

\[
P_{\text{PAAS}}^{\text{DIP}} = \prod_{n=0}^{t-1} \left(\frac{\hat{p}_n(0)}{p_n^0} \right)^{1/n(t)} \quad (5.19)
\]

Similarly, the geometric counterpart to the imputation Paasche price index (5.16) is obtained by imputing period \(t \) prices for the properties belonging to the period \(t \) sample \(S(t) \), which are given by \(\hat{p}_t^*(t) = \exp(\hat{\beta}_t^0) \exp(\sum_{k=1}^t \hat{\beta}_k^0 z_{k0}) \), and replacing the observed period \(t \) prices by the predictions \(\hat{p}_t^* = \exp(\beta_t^0) \exp(\sum_{k=1}^t \beta_k z_{k0}) \). So we have

\[
P_{\text{PAAS}}^{\text{DIP}} = \prod_{n=0}^{t-1} \left(\frac{\hat{p}_n(0)}{p_n^0} \right)^{1/n(t)} \quad (5.20)
\]

5.31 When OLS regression is used to estimate the log-linear regression equations, the denominator of (5.19) and the numerator of (5.20) will equal the geometric sample means of the prices in period 0 and period \(t \), respectively, and the double imputation indices coincide with single imputation indices. Taking the geometric mean of (5.19) and (5.20) yields

\[
P_{\text{PAAS}}^{\text{DIP}} = \left[P_{\text{PAAS}}^{\text{DIP}} \cdot P_{\text{PAAS}}^{\text{DIP}} \right]^{1/2} \quad (5.21)
\]

where \(\bar{z}_t^0 = (\bar{z}_0^0 + \bar{z}_t^0)/2 \) denotes the mean of the average characteristics in periods 0 and \(t \), as before.

5.32 The symmetric imputation index equation (5.21) can be rewritten in a way that is surprisingly similar to equation (5.7) for the time dummy index when OLS is used to estimate the hedonic equations (see Diewert, Heravi and Silver, 2009, and de Haan, 2010a):

\[
P_{\text{PAAS}}^{\text{DIP}} = \prod_{n=0}^{t-1} \left(\frac{p_n^0}{\hat{p}_n(0)} \right)^{1/n(t)} \exp \left[\sum_{k=1}^t (\hat{\beta}_k^0 - \hat{\beta}_k) \bar{z}_k^0 \right] \quad (5.22)
\]

where \(\hat{\beta}_k^0 = (\hat{\beta}_k^0 + \hat{\beta}_k)/2 \) denotes the average value of the \(k \)-th coefficient in periods 0 and \(t \). Equation (5.22) adjusts the ratio of observed geometric mean prices for any differences in the average sample characteristics. Tripplett (2006) refers to this as “hedonic quality adjustment”. A comparison with equation (5.7) shows that if the sample averages of
all characteristics stay the same ($\xi_i = \bar{xi}$), then the symmetric hedonic imputation index and the time dummy index coincide and equal the ratio of observed geometric mean prices, but this will obviously, rarely happen. Both types of hedonic indices also coincide if, for each characteristic, the average coefficient β_k^* from the two separate regressions would be equal to the coefficient β_k from the time dummy regression. This is rare as well, but it suggests that both approaches generate similar results if the characteristics parameters are approximately constant over time.

5.33 If the characteristics parameters can be assumed constant over time, the average coefficients $\hat{\beta}_k^*$ in equation (5.22) can be replaced by the base period coefficients β_k^*. In that case there would be no need to run a regression in each time period, and we would in fact be using the non-symmetric imputation price index given by equation (5.13). The base period regression could be run on a bigger data set to increase the stability of the coefficients. It is advisable to regularly check if the coefficients have significantly changed and to update them when necessary.

5.34 As mentioned earlier, geometric price indices are less suitable as estimators of quality-adjusted RPPIs. This is not to say that they should never be used. In conjunction with stratification, the use of (5.21) could produce satisfactory results since this would combine quality adjustment (using a log-linear hedonic regression model) and a symmetric index number formula within the different strata with mix adjustment across strata. The stratified hedonic approach will be discussed in the next section.

Stratified Hedonic Indices

5.35 Chapter 4 dealt with stratification or mix adjustment. Stratification is a simple and powerful tool to adjust for changes in the quality mix of the properties sold. However, some quality mix changes within the strata are likely to remain, as essentially every property is a unique good, and some unit value bias could therefore occur. A more detailed stratification scheme may be unfeasible, especially when the number of observations is relatively small. Provided that the necessary data on characteristics are available, it could be worthwhile to work with a less fine stratification scheme and use hedonic regression at the stratum level to adjust for quality mix changes. This two-stage approach combines hedonics at the lower (stratum) level and explicit weighting at the upper level to form an overall RPPI.

5.36 Two advantages of stratification have been mentioned earlier. First, stratification enables the statistical agency to publish different RPPIs for different market segments. Users will benefit from this because it is well known that different types of houses, different regions, etc. can exhibit quite different price trends. Second, stratification can be helpful for reducing sample selection bias, including bias due to non-response, in particular for a stock-based RPPI.

5.37 When using hedonic regression techniques to adjust for quality (mix) changes, stratification is highly recommended. It is very unlikely that a single hedonic model holds true for all market segments, hence separate regressions should be run for different types of properties, different locations, etc. There are in fact two issues involved. Perhaps the biggest issue is that different sets of property characteristics will be needed for different market segments. For example, the characteristics that are relevant for detached dwelling units differ from those that are relevant for high rise apartments, if only because the floor of the apartment seems an important price determining variable. The second, though probably less important, issue is that the parameter values for the same characteristics can differ across housing market segments. Statistical tests for differences in parameter values between sub-samples can be found in any econometrics textbook.

5.38 The stratified hedonic approach can be illustrated most easily with reference to the imputation method, especially in combination with the Laspeyres index formula. Recall the third expression on the right-hand side of the hedonic single imputation Laspeyres price index (5.15), where the period t prices for the houses in the base period sample $S(0)$ are ‘missing’ and imputed (using the estimated hedonic regression model for period t) by $\hat{p}_t(0)$. Suppose, as in Chapter 4, that the total sample is (post) stratified into M sub-samples $S_m(0)$. Equation (5.15) can then be rewritten as

$$p_{0t}^{\text{Hi}} = \frac{\sum_{m=1}^{M} \hat{p}_t(0)}{\sum_{m=1}^{M} p_t^0}$$

$$= \frac{\sum_{m=1}^{M} \sum_{s\in S_m(0)} p_t^0 \hat{p}_t(0) / \sum_{s\in S_m(0)} p_t^0}{\sum_{m=1}^{M} \sum_{s\in S_m(0)} p_t^0}$$

where $p_{0t}^{\text{Hi}} = \sum_{s\in S_m(0)} \hat{p}_t(0) / \sum_{s\in S_m(0)} p_t^0$ denotes the hedonic (single) imputation Laspeyres price index between the base period and period t for cell m; $s^0 = \sum_{s\in S_m(0)} p_t^0 / \sum_{s\in S_m(0)} p_t^0$ is the corresponding sales value share, which serves as the weight for p_{0t}^{Hi}. Note that the last expression of (5.23) has a similar structure as the mix-adjusted index given by equation (4.1), but in the present case the cell indices are hedonic imputation indices rather than unit value indices.
5.39 Equation (5.23) shows that if the imputed prices $\hat{p}_n(0)$ for all houses in the sample $S(0)$ are based on one overall hedonic regression, then the aggregate hedonic imputation Laspeyres index can be written in the form of a stratified index. But this is just another way of writing things, not what is meant by a stratified hedonic approach. Also, as argued above, the use of a common model is very unrealistic. So instead of running one big hedonic regression, separate regressions should be performed on the data of the sub-samples in each time period to obtain imputed (period t) prices and imputation cell indices. That would lead to a stratified Laspeyres-type hedonic imputation index.

5.40 It would be preferable to estimate a stratified Fisher hedonic index rather than a Laspeyres one. This is perfectly feasible for a sales RPPI but may not be feasible for a stock RPPI, as was already mentioned in Chapter 3, since up-to-date census data on the number of properties is often lacking.

Main Advantages and Disadvantages

5.41 This section summarizes the advantages and disadvantages of hedonic regression methods to construct an RPPI. The main advantages are:

- If the list of available property characteristics is sufficiently detailed, hedonic methods can in principle adjust for both sample mix changes and quality changes of the individual properties.
- Price indices can be constructed for different types of dwellings and locations through a proper stratification of the sample. Stratification has a number of other advantages as well.
- The hedonic method is probably the most efficient method for making use of the available data.
- The imputation variant of the hedonic regression method is analogous to the matched model methodology that is widely used in order to construct price indices.

5.42 The main disadvantages of hedonic regression are:

- It may be difficult to control sufficiently for location if property prices and price trends differ across detailed regions. However, a stratified approach to hedonic regressions will help overcome this problem to some extent.
- The method is data intensive since it requires data on all relevant property characteristics, so it is relatively expensive to implement.(3)

- While the method is essentially reproducible, different choices can be made regarding the set of characteristics included in the model, the functional form, possible transformations of the dependent variable (4), the stochastic specification, etc., which could lead to varying estimates of overall price change. Thus, a lot of metadata may be required.
- The general idea of the hedonic method is easily understood but some of the technicalities may not be easy to explain to users.

5.43 The overall evaluation of the hedonic regression method is that it is probably the best method that could be used in order to construct constant quality RPPIs for various types of property.(5) We are in favor of the (double) imputation variant because this is the most flexible hedonic approach and because this approach is analogous to the standard matched-model methodology to construct price indices.

5.44 In the next three sections, the various hedonic regression methods will be illustrated using the data for the town of “A” that was described at the end of Chapter 4. The following two sections show the results of time dummy hedonic regressions, using the log of the selling price as the dependent variable and using the untransformed selling price, respectively. The last section illustrates the hedonic imputation method. All of the resulting price indices are for the sales of detached houses; some results using the data for the town of “A” for indices of the stock of houses will be postponed until Chapter 8.

Time Dummy Models Using the Logarithm of Price as the Dependent Variable

The Log Linear Time Dummy Model

5.45 Recall the description of the data for the Dutch town of “A” on sales of detached houses. In quarter t, there were $N(t)$ sales of detached houses in “A” where p_n^t is the selling price of house n sold during quarter t. There is information on three characteristics of house n sold in period t: L_n^t is the area of the plot in square meters (m^2); S_n^t is the floor space area of the structure in m^2 and A_n^t is the age in decades of house n in period t. Using these variables, the

(3) However, as will be seen from the Dutch example given below, just having information on location, type of property, its age, its floor space area and the plot area may explain most of the variation in the selling price.

(4) For example, the dependent variable could be the sales price of the property or its logarithm or the sales price divided by the area of the structure and so on.

(5) This evaluation agrees with that of Hoffmann and Lorenz (2006; 15): “As far as quality adjustment is concerned, the future will certainly belong to hedonic methods.” Gourieroux and Lafontaine (2009) have shown that it is possible to construct an official nationwide credible hedonic regression model for real estate properties.
The Log Linear Time Dummy Model with Quality Adjustment of Structures

5.49 If age A interacts with the quantity of structures S in a multiplicative manner, an appropriate explanatory variable for the selling price of a house would be $\gamma(1 - d\delta)S$ (i.e., geometric depreciation where δ is the decade geometric depreciation rate or $\gamma(1 - \delta)S$ (straight line depreciation where δ is the decade straight line depreciation rate) instead of the additive specification $\gamma S + \delta A$. In what follows, the straight line variant of this class of models will be estimated. Thus, the log linear time dummy hedonic regression model with quality adjusted structures becomes

$$
\ln p_i^t = \alpha + \beta L_i + \gamma S_i + \delta A_i + \tau' + \epsilon_i^t \quad (5.25)
$$

where τ' is a parameter which shifts the hedonic surface in quarter t upwards or downwards as compared to the surface in quarter 1. (19)

5.46 It is easy to construct a price index using the log linear time dummy hedonic model (5.24). Exponentiating both sides of equation (5.24), and neglecting the error term, yields

$$
p_i^t = \exp(\alpha)\exp(L_i^\prime)\exp(S_i^\prime)\exp(A_i^\prime)\exp(\tau')
$$

If we could observe a property with the same characteristics in the base period 1 and in some comparison period $t(>1)$, then the corresponding price relative (again neglecting error terms) would simply be equal to $\exp(\tau')$. For two consecutive periods t and $t+1$, the price relative (again neglecting error terms) would equal $\exp(\tau'_{t+1})/\exp(\tau')$, and this can serve as the chain link in a price index. Figure 5.1 shows the resulting index, labeled as P_{nt} (hedonic index no. 1), and Table 5.1 lists the index numbers. The R^2 for this model was .8420, which is quite satisfactory for a hedonic regression model with only three explanatory variables. (18) For later comparison purposes, note that the log likelihood was 1407.6.

5.47 A problem with this model is that the underlying price formation model seems implausible: S and L interact multiplicatively in order to determine the overall house price whereas it seems most likely that lot size L and house size S interact in an approximately additive fashion to determine the overall house price.

5.48 Another problem with the regression model (5.24) is that age is entered in an additive fashion. The problem is that we would expect age to interact directly with the structures variable S as a (net) depreciation variable and not interact directly with the land variable L, because land does not depreciate. In the following model, this direct interaction of age with structures will be made.

The estimating equation for the pooled data set will include time dummy variables to indicate the quarters. For all the models estimated for the town of ‘A’, it is assumed that the error terms ε are independently distributed normal variables with mean 0 and constant variance. Maximum likelihood estimation is used in order to estimate the unknown parameters in each regression model. The nonlinear option in Shazam was used for the actual estimation.

The 15 parameters α, τ', \ldots correspond to variables that are exactly collinear in the regression (5.24) and thus the restriction $\tau' = 0$ is imposed in order to identify the remaining parameters.

Later on in this chapter and in Chapter 6, some hedonic regressions will be run that use prices, P_i^t, as the dependent variables rather than the logs of the prices. To facilitate comparisons of goodness of fit across models, we will transform the predicted values for the log price models into predicted price levels by exponentiating the predicted prices and then calculating the correlation coefficient between these predicted price levels and the actual prices. Squaring this correlation coefficient gives us a levels type measure of goodness of fit for the log price models which is denoted by R^2. For this particular model, $R^2 = .8061$.

5.50 Regression model (5.25) was run using the 14 quarters of sales data for the town of ‘A’. Note that a single common straight line depreciation rate δ is estimated. The estimated decade (net) depreciation rate δ was $\delta = 11.94\%$ (or around 1.2% per year), which is very reasonable. As was the case with model (5.24), if a house with the same characteristics in two consecutive periods t and $t+1$ could be observed, the corresponding price relative (neglecting error terms) $exp(\tau'_{t+1})/exp(\tau')$ can serve as the chain link in a price index; see Figure 5.1 and Table 5.1 for the resulting index, labeled P_{nt}. The R^2 for this model was .8345, which is quite a drop from the previous log likelihood of 1407.6. (1)

5.51 It appears that the imposition of more theory – with respect to the treatment of the age of the house – has led to a drop in the empirical fit of the model. However, it is likely that this model and the previous one are mis-specified (22): they both multiply together land area times structure area to determine the price of the house while it is likely that an additive interaction between L and S is more appropriate than a multiplicative one.

\dagger This regression is essentially linear in the unknown parameters and hence it is very easy to estimate.

\dagger It is a net depreciation rate because we have no information on renovation expenditures, i.e., δ is equal to gross wear and tear depreciation of the house less average expenditure on renovations and repairs.

\dagger The levels type R^2 for this model was $R^2 = .7647$, which again is quite a drop from the corresponding levels R^2 for the previous log price model.

\dagger If the variation in the independent variables is relatively small, the difference in indexes generated by the various hedonic regression models considered in this section and the following two sections is likely to be small since virtually all of the models considered can offer roughly a linear approximation to the “truth”. But when the variation in the independent variables is large, as it is in the present housing context, the choice of functional form can have a substantial effect. Thus a priori reasoning should be applied to both the choice of independent variables in the regression as well as to the choice of functional form. For additional discussion on functional form issues, see Diewert (2003a).
5.52 Note that, given the depreciation rate \(\delta \), quality adjusted structures (adjusted for the aging of the structure) for each house \(n \) in each quarter \(t \) can be defined as follows:

\[
S_t^n = (1 - \delta t^n)S_t^n \\
(t = 1,...,14; n = 1,...,N(t))
\]

The Log Log Time Dummy Model with Quality Adjustment of Structures for Age

5.53 In the remainder of this section, quality adjusted (for age) structures, \((1 - \delta t^n)S_t^n\), will be used as an explanatory variable, rather than the unadjusted structures area, \(S_t^n\). The log log model is similar to the previous log linear model, except that now, instead of using \(L_t^n\) and \((1 - \delta t^n)S_t^n\) as explanatory variables in the regression model, the logarithms of the land and quality adjusted structures areas are used as independent variables. Thus the log log time dummy hedonic regression model with quality adjusted structures is the following:{(23)}

\[
\ln p_t^n = \alpha + \beta \ln L_t^n + \gamma \ln[(1 - \delta t^n)S_t^n] + \tau^n + \epsilon_t^n \quad (5.27)
\]

\(t = 1,...,14; n = 1,...,N(t); \tau^n = 0\)

{(23)} This hedonic regression model turns out to be a variant of McMillen’s (2003) consumer oriented approach to hedonic housing models. His theoretical framework draws on the earlier work of Muth (1971) and is outlined in Diewert, de Haan and Hendriks (2010). See also McDonald (1981).

5.54 Using the data for the Dutch town of “A”, the estimated decade (net) depreciation rate was \(\delta = 0.1050 \) (standard error 0.00374). If both sides of (5.27) were exponentiated and the error terms were neglected, the house price \(\hat{p}_t^n \) would equal \(\exp(\alpha)[L_t^n]^{\gamma}(S_t^n)\exp(\tau^n) \), where \(S_t^n \) denotes quality adjusted structures as defined by (5.26). So if we could observe a house with the same characteristics in two consecutive periods \(t \) and \(t+1 \), the corresponding price relative (neglecting error terms) would be equal to \(\exp(\tau^n) \) and this again can serve as the chain link in a price index; see Figure 5.1 and Table 5.1 for the resulting index, labeled \(P_{H1} \). The \(R^2 \) for this model was .8599 (the levels measure of fit was \(R^2 = .8880 \), which is an increase over models (5.25) and (5.26)); the log likelihood was 1545.4, a big increase over the log likelihoods for the other two models (1407.6 and 1354.9).

5.55 The house price series generated by the three log-linear time dummy regressions described in this section, \(P_{H1} \), \(P_{H2} \) and \(P_{H3} \), are plotted in Figure 5.1 along with the chained stratified sample mean Fisher index, \(P_{FCH} \). These four house price series are listed in Table 5.1. All four indices capture the same trend but there can be differences of over 2 percent between them in some quarters. Notice that all of the indices move in the same direction from quarter to quarter with decreases in quarters 4, 8, 12 and 13 except that \(P_{H3} \) – the index that corresponds to the log log time dummy model – increases in quarter 12.

Figure 5.1. Log-Linear Time Dummy Price Indices and the Chained Stratified Sample Mean Fisher Price Index

![Figure 5.1](image)

Source: Authors’ calculations based on data from the Dutch Land Registry

©International Monetary Fund. Not for Redistribution
5.56 Although model (5.27) performs the best of the simple hedonic regression models considered thus far, it has the unsatisfactory feature that the quantities of land and of quality adjusted structures determine the price of a property in a multiplicative manner. It is more likely that house prices are determined by a weighted sum of their land and quality adjusted structures amounts. In the following section, an additive time dummy model will therefore be estimated. The expectation is that this model will fit the data better.

5.57 There are reasons to believe that the selling price of a property is linearly related to the plot area of the property plus the area of the structure due to the competitive nature of the house building industry. If the age of the structure is treated as another characteristic that has an importance in determining the price of the property, then the following linear time dummy hedonic regression model might be an appropriate one:

\[p_t^* = \alpha + \beta L_t + \gamma S_t + \delta A_t + t^\ast + \epsilon_t \]
\[t = 1, \ldots, 14; n = 1, \ldots, N(t); \quad t^\ast = 0 \]

5.58 The above linear regression model was run using the data for the town of “A”. The \(R^2 \) for this model was .8687, much higher than those obtained in the previous regressions; the log likelihood was -10790.4 (which cannot easily be compared to the previous log likelihoods since the dependent variable has changed from the logarithm of price to just price). The above linear model defined by equations (5.28) to form an overall house price index is a bit more difficult than using the previous log-linear or log log time dummy regression models. In the previous section, holding characteristics constant and neglecting error terms, the relative price for the same house over any two periods turns out to be constant, leading to an unambiguous overall index. In the present situation, holding characteristics constant and neglecting error terms, the difference in price for the same house turns out to be constant, but the relative prices for different houses will not in general be constant. Therefore, an overall index will be constructed which uses the prices generated by the estimated parameters for model (5.28).

Table 5.1. Log-Linear Time Dummy Price Indices and the Chained Stratified Sample Mean Fisher Price Index

<table>
<thead>
<tr>
<th>Quarter</th>
<th>(P_{t1})</th>
<th>(P_{t2})</th>
<th>(P_{t3})</th>
<th>(P_{tCH})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.00000</td>
<td>1.00000</td>
<td>1.00000</td>
<td>1.00000</td>
</tr>
<tr>
<td>2</td>
<td>1.04609</td>
<td>1.04059</td>
<td>1.03314</td>
<td>1.02396</td>
</tr>
<tr>
<td>3</td>
<td>1.06168</td>
<td>1.05888</td>
<td>1.03876</td>
<td>1.04081</td>
</tr>
<tr>
<td>4</td>
<td>1.04007</td>
<td>1.03287</td>
<td>1.03876</td>
<td>1.04081</td>
</tr>
<tr>
<td>5</td>
<td>1.05484</td>
<td>1.05032</td>
<td>1.03848</td>
<td>1.04083</td>
</tr>
<tr>
<td>6</td>
<td>1.08290</td>
<td>1.07532</td>
<td>1.06369</td>
<td>1.05754</td>
</tr>
<tr>
<td>7</td>
<td>1.09142</td>
<td>1.08502</td>
<td>1.07957</td>
<td>1.07340</td>
</tr>
<tr>
<td>8</td>
<td>1.06237</td>
<td>1.05655</td>
<td>1.05181</td>
<td>1.06706</td>
</tr>
<tr>
<td>9</td>
<td>1.10572</td>
<td>1.09799</td>
<td>1.09736</td>
<td>1.08950</td>
</tr>
<tr>
<td>10</td>
<td>1.10590</td>
<td>1.10071</td>
<td>1.09786</td>
<td>1.11476</td>
</tr>
<tr>
<td>11</td>
<td>1.10722</td>
<td>1.10244</td>
<td>1.09167</td>
<td>1.12471</td>
</tr>
<tr>
<td>12</td>
<td>1.10177</td>
<td>1.09747</td>
<td>1.09859</td>
<td>1.10483</td>
</tr>
<tr>
<td>13</td>
<td>1.09605</td>
<td>1.08588</td>
<td>1.09482</td>
<td>1.10450</td>
</tr>
<tr>
<td>14</td>
<td>1.10166</td>
<td>1.09694</td>
<td>1.10057</td>
<td>1.11189</td>
</tr>
</tbody>
</table>

Source: Authors’ calculations based on data from the Dutch Land Registry.

5.59 Using the linear model defined by equations (5.28) to form an overall house price index is a bit more difficult than using the previous log-linear or log log time dummy regression models. In the previous section, holding characteristics constant and neglecting error terms, the relative price for the same house over any two periods turns out to be constant, leading to an unambiguous overall index. In the present situation, holding characteristics constant and neglecting error terms, the difference in price for the same house turns out to be constant, but the relative prices for different houses will not in general be constant. Therefore, an overall index will be constructed which uses the prices generated by the estimated parameters for model (5.28)

\[p_t^* = \alpha + \beta L_t + \gamma S_t + \delta A_t + t^\ast + \epsilon_t \]
\[t = 1, \ldots, 14; n = 1, \ldots, N(t); \quad t^\ast = 0 \]

(25) However, recall that the levels adjusted measure of fit for the log log model described by (5.27) was .8880, which is higher than .8667.

(26) Marc Francke has pointed out that it is possible to compare log likelihoods across two models where the dependent variable has been transformed by a known function in the second model; see Davidson and McKinnon (1993; 491) where a Jacobian adjustment makes it possible to compare log likelihoods across the two models.

©International Monetary Fund. Not for Redistribution
and evaluated at the sample average amounts of L, S and the sample average age of a house A. The resulting quarterly prices for this “average” house were converted into an index, P_{ts}, which is listed in Table 5.2 and charted in Figure 5.2.

5.60 The hedonic regression model defined by (5.28) is perhaps the simplest possible one but it is a bit too simple since it neglects the fact that the interaction of age with the selling price of the property takes place via a multiplicative interaction with the structures variable and not via a general additive factor. In what follows, model (5.28) is re-estimated using quality adjusted structures as an explanatory variable rather than just entering age A as a separate stand alone characteristic.

The Linear Time Dummy Model
with Quality Adjusted Structures

5.61 The linear time dummy hedonic regression model with quality adjusted structures is described by

$$p_i = \alpha + \beta L_i + \gamma (1 - \delta A_i)S_i + \epsilon_i$$ \hspace{1cm} (5.29)

This is the most plausible hedonic regression model so far. It works with quality adjusted (for age) structures S equal to $(1 - \delta A)S$ instead of having A and S as completely independent variables that enter into the regression in a linear fashion.

5.62 The results for this model were a clear improvement over the results of model (5.28). The log likelihood increased by 92 to -10697.8 and the R^2 increased to .8789 from the previous .8687. The estimated decade depreciation rate was $\delta = 0.1119$ (0.00418), which is reasonable as usual. This linear regression model has the same property as the model (5.28): house price differences are constant over time for all constant characteristic models but house price ratios are not constant. So again an overall index will be constructed which uses the prices generated by the estimated parameters in (5.29) and evaluated at the sample average amounts of L, S and the average age of a house A. The resulting quarterly house prices for this “average” model were converted into an index, P_{ts}, which is listed in Table 5.2 and charted in Figure 5.2. For comparison purposes, P_{ts} (the time dummy Log Log model index) and P_{PC} (the chained stratified sample mean Fisher index) will be charted along with P_{ts} and P_{ts}. The preferred indices thus far are P_{PC} and P_{ts}.

5.63 It can be seen that again, all four indices capture the same trend but there can be differences of over 2 percent between the various indices for some quarters. Note that all of the indices move in the same direction from quarter to quarter with decreases in quarters 4, 8, 12 and 13, except that P_{ts} increases in quarter 12.

Figure 5.2. Linear Time Dummy Price Indices, the Log Log Time Dummy Price Index and the Chained Stratified Sample Mean Fisher Price Index

![Figure 5.2](https://example.com/image)

Source: Authors’ calculations based on data from the Dutch Land Registry

(27) The sample average amounts of L and S were 257.6 m2 and 127.2 m2 respectively and the average age of the detached dwellings sold over the sample period was 1.85 decades.
5.64 A problem with the hedonic time dummy regression models considered thus far is that the prices of land and quality adjusted structures are not allowed to change in an unrestricted manner from period to period. The class of hedonic regression models to be considered in the following section does not suffer from this problem.

Hedonic Imputation Regression Models

5.65 The theory of hedonic imputation indices explained earlier is applied to the present situation as follows. For each period, run a linear regression of the following form:

$$ p'_t = \alpha' + \beta' L'_t + \gamma' (1-\delta' A_t') S'_t + \epsilon'_t \quad (5.30) $$

Using the data for the town of “A”, there are only four parameters to be estimated for each quarter: \(\alpha' \), \(\beta' \), \(\gamma' \) and \(\delta' \) for \(t = 1, \ldots, 14 \). Note that (5.30) is similar in form to the model defined by equations (5.29), but with some significant differences:

- Only one depreciation parameter is estimated in the model defined by (5.29) whereas in the present model, there are 14 depreciation parameters; one for each quarter.
- Similarly, in model (5.29), there was only one \(\alpha \), \(\beta \) and \(\gamma \) parameter whereas in (5.30), there are 14 \(\alpha' \), 14 \(\beta' \) and 14 \(\gamma' \) parameters to be estimated. On the other hand, model (5.29) had an additional 13 time shifting parameters (the \(\tau' \)) that required estimation.

Thus the hedonic imputation model involves the estimation of 56 parameters, the time dummy model only 17, so it is likely that the hedonic imputation model will fit the data much better.

5.66 In the housing context, precisely matched models across periods do not exist; there are always depreciation and renovation activities that make a house in the exact same location not quite comparable over time. This lack of matching, say between quarters \(t \) and \(t+1 \), can be overcome in the following way: take the parameters estimated using the quarter \(t+1 \) hedonic regression and price out all of the housing models (i.e., sales) that appeared in quarter \(t \). This generates predicted quarter \(t+1 \) prices for the quarter \(t \) models, \(\hat{p}_{t+1}(t) \), as follows:

$$ \hat{p}_{t+1}(t) = \hat{\alpha}' + \hat{\beta}' L'_t + \hat{\gamma}' (1-\hat{\delta}' A_t') S'_t \quad (5.31) $$

where \(\hat{\alpha}' \), \(\hat{\beta}' \), \(\hat{\gamma}' \) and \(\hat{\delta}' \) are the parameter estimates for model (5.30) for \(t = 1, \ldots, 14 \). Now we have a set of pseudo matched quarter \(t+1 \) prices for the models that appeared in quarter \(t \) and the following Laspeyres type hedonic imputation (or pseudo matched model) index, going from quarter \(t \) to \(t+1 \), can be formed: \(^{28}\)

$$ P^{t+1}_{nm} = \frac{\sum_{s=1}^{N(t)} \hat{p}_{t+1}^{s}(t)}{\sum_{s=1}^{N(t)} p_{t}^{s}} \quad (5.32) $$

\(^{28}\) Due to the fact that the regressions defined by (5.30) have a constant term and are essentially linear in the explanatory variables, the sample residuals in each of the regressions will sum to zero. Hence the sum of the predicted prices will equal the sum of the actual prices for each period. Thus the sum of the actual prices in the denominator of (5.32) will equal the sum of the corresponding predicted prices and similarly, the sum of the actual prices in the numerator of (5.34) will equal the corresponding sum of the predicted prices.

Table 5.2. Linear Time Dummy Price Indices, the Log Log Time Dummy Price Index and the Chained Stratified Sample Mean Fisher Price Index

<table>
<thead>
<tr>
<th>Quarter</th>
<th>(P_{HH})</th>
<th>(P_{HS})</th>
<th>(P_{HS})</th>
<th>(P_{FCH})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.00000</td>
<td>1.00000</td>
<td>1.00000</td>
<td>1.00000</td>
</tr>
<tr>
<td>2</td>
<td>1.04864</td>
<td>1.04313</td>
<td>1.03314</td>
<td>1.02396</td>
</tr>
<tr>
<td>3</td>
<td>1.06929</td>
<td>1.06667</td>
<td>1.05482</td>
<td>1.07840</td>
</tr>
<tr>
<td>4</td>
<td>1.04664</td>
<td>1.03855</td>
<td>1.03876</td>
<td>1.04081</td>
</tr>
<tr>
<td>5</td>
<td>1.05077</td>
<td>1.04706</td>
<td>1.03848</td>
<td>1.04083</td>
</tr>
<tr>
<td>6</td>
<td>1.08360</td>
<td>1.07661</td>
<td>1.06369</td>
<td>1.05754</td>
</tr>
<tr>
<td>7</td>
<td>1.09593</td>
<td>1.09068</td>
<td>1.07957</td>
<td>1.07340</td>
</tr>
<tr>
<td>8</td>
<td>1.06379</td>
<td>1.05864</td>
<td>1.05181</td>
<td>1.06706</td>
</tr>
<tr>
<td>9</td>
<td>1.10496</td>
<td>1.09861</td>
<td>1.09736</td>
<td>1.08950</td>
</tr>
<tr>
<td>10</td>
<td>1.10450</td>
<td>1.10107</td>
<td>1.09786</td>
<td>1.11476</td>
</tr>
<tr>
<td>11</td>
<td>1.10788</td>
<td>1.10588</td>
<td>1.09167</td>
<td>1.12471</td>
</tr>
<tr>
<td>12</td>
<td>1.10403</td>
<td>1.10044</td>
<td>1.09859</td>
<td>1.10483</td>
</tr>
<tr>
<td>13</td>
<td>1.09805</td>
<td>1.08864</td>
<td>1.09482</td>
<td>1.10450</td>
</tr>
<tr>
<td>14</td>
<td>1.11150</td>
<td>1.10572</td>
<td>1.10057</td>
<td>1.11189</td>
</tr>
</tbody>
</table>

Source: Authors’ calculations based on data from the Dutch Land Registry
As mentioned earlier, the quantity that is associated with each price is 1 as each housing unit is basically unique and can only be matched through the use of a model.

5.67 The same method can be applied going backwards from the housing sales that took place in quarter \(t+1 \); take the parameters for the quarter \(t \) hedonic regression and price out all of the housing models that appeared in quarter \(t+1 \) and generate predicted prices, \(\hat{p}_n(t+1) \), for these \(t+1 \) models:

\[
\hat{p}_n(t + 1) = \hat{\gamma} + \hat{\beta}_I^t E_n^t + \hat{\gamma}'(1 - \hat{\delta}^t) A_n^{t+1} S_n^{t+1} \\
t = 1, \ldots, 13; n = 1, \ldots, N_{t+1}
\]

Now we have a set of “matched” quarter \(t \) prices for the models that appeared in period \(t+1 \) and we can form the following Paasche type hedonic imputation (or pseudo matched model) index, going from quarter \(t \) to \(t+1 \):

\[
P_{mtr}^{t+1} = \frac{\sum_{n=1}^{N_{t+1}} p_n^{t+1}}{\sum_{n=1}^{N_{t+1}} \hat{p}_n(t + 1)} \\
t = 1, \ldots, 13
\]

5.68 Once the above Laspeyres and Paasche imputation price indices have been calculated, the corresponding Fisher type hedonic imputation index going from period \(t \) to \(t+1 \) can be formed by taking the geometric average of the two indices defined by (5.32) and (5.34):

\[
P_{mtr}^{t+1} = \left[P_{ltr}^{t+1} P_{ltr}^t \right]^{1/2} \\
t = 1, \ldots, 13
\]

5.69 The resulting chained Laspeyres, Paasche and Fisher imputation price indices, \(P_{ltr}, P_{mtr} \) and \(P_{mtr} \), based on the data for the town of “A”, are plotted below in Figure 5.3 and are listed in Table 5.3. The three imputation indices are amazingly close. The Fisher imputation index is our preferred hedonic price index thus far; it is better than the time dummy indices because imputation allows the price of land and of quality adjusted structures to change independently over time, whereas the time dummy indices shift the hedonic surface in a parallel fashion. The empirical results indicate that, at least for the present data set for the town of “A”, the Laspeyres imputation index provides a close approximation to the preferred Fisher imputation index.

Figure 5.3. Chained Laspeyres, Paasche and Fisher Hedonic Imputation Price Indices

Source: Authors’ calculations based on data from the Dutch Land Registry
Table 5.3. Chained Laspeyres, Paasche and Fisher Hedonic Imputation Price Indices

<table>
<thead>
<tr>
<th>Quarter</th>
<th>PHL</th>
<th>HIP</th>
<th>HIP</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.00000</td>
<td>1.00000</td>
<td>1.00000</td>
</tr>
<tr>
<td>2</td>
<td>1.04234</td>
<td>1.04479</td>
<td>1.04356</td>
</tr>
<tr>
<td>3</td>
<td>1.06639</td>
<td>1.06853</td>
<td>1.06746</td>
</tr>
<tr>
<td>4</td>
<td>1.03912</td>
<td>1.03755</td>
<td>1.03834</td>
</tr>
<tr>
<td>5</td>
<td>1.04942</td>
<td>1.04647</td>
<td>1.04794</td>
</tr>
<tr>
<td>6</td>
<td>1.07267</td>
<td>1.07840</td>
<td>1.07553</td>
</tr>
<tr>
<td>7</td>
<td>1.08923</td>
<td>1.10001</td>
<td>1.09460</td>
</tr>
<tr>
<td>8</td>
<td>1.05689</td>
<td>1.06628</td>
<td>1.06158</td>
</tr>
<tr>
<td>9</td>
<td>1.09635</td>
<td>1.10716</td>
<td>1.10174</td>
</tr>
<tr>
<td>10</td>
<td>1.09945</td>
<td>1.10879</td>
<td>1.10411</td>
</tr>
<tr>
<td>11</td>
<td>1.11062</td>
<td>1.11801</td>
<td>1.11430</td>
</tr>
<tr>
<td>12</td>
<td>1.10665</td>
<td>1.11112</td>
<td>1.10888</td>
</tr>
<tr>
<td>13</td>
<td>1.09830</td>
<td>1.09819</td>
<td>1.09824</td>
</tr>
<tr>
<td>14</td>
<td>1.11981</td>
<td>1.11280</td>
<td>1.11630</td>
</tr>
</tbody>
</table>

Source: Authors’ calculations based on data from the Dutch Land Registry

Figure 5.4. The Fisher Imputation Price Index, the Chained Stratified Sample Mean Fisher Price Index, the Linear Time Dummy Price Index and the Log Log Time Dummy Price Index

5.70 To conclude: our two “best” indices are the Fisher imputation index P_{HIF} and the stratified chained Fisher index P_{CHF}. Overall, the imputation index P_{HIF} should probably be preferred to P_{CHF} since the stratified sample indices will have a certain amount of unit value bias which will most likely be greater than any functional form bias in P_{HIF}. These two “best” indices are plotted in Figure 5.4 along with the log-log time dummy index P_{LLD} and the linear time dummy index with quality adjusted structures P_{LTQ}. All of the price indices except P_{LTQ} show downward movements in quarters 4, 8, 12 and 13 and upward movements in the other quarters; P_{LTQ} moves up in quarter 12 instead of falling like the other indices.

©International Monetary Fund. Not for Redistribution
Repeat Sales Methods
The Basic Repeat Sales Model

6.1 The repeat sales method was initially proposed by Bailey, Muth and Nourse (1963). They saw their procedure as a generalization of the chained matched model methodology applied by the pioneers in the construction of real estate price indices like Wyngarden (1927) and Wenzlick (1952). The best-known repeat sales indices are the Standard and Poor’s/Case-Shiller Home Price Indices in the US, which are computed for 20 cities (Standard and Poor’s, 2009). The Federal Housing Finance Agency (FHFA) also computes a repeat sales index for the US, (1) using a slightly different approach. Residex and the UK Land Registry compute repeat sales indices for Australian cities and for the UK, respectively. (2)

6.2 As the name indicates, the method utilizes information on properties which have been sold more than once. Because it is a matched-properties type of method, controlling for period-to-period differences in the sample of properties is not required. However, because of the low incidence of resale units at times, it would not be very useful to compute a repeat sales RPPI using the standard matched model methodology and conventional index number formulae. Therefore, a stochastic model is postulated which “explains” the price changes of houses that have been sold repeatedly. This (dummy variable) regression model is then estimated on the pooled data (i.e., on the pooled price changes) across the sample period.

6.3 The only information required to estimate a standard repeat sales regression equation is price, sales date and address of the properties; therefore this method is much less data intensive than hedonic methods. Also, the repeat sales method controls for location at the finest level of detail (the address), something which hedonic regression methods are often unable to do with great precision. (3) One problem with the repeat sales method however is that a dwelling unit that is sold at two different points in time is not necessarily identical due to such factors as depreciation and renovations. Consequently, the longer the span of time between sales, the more questionable the constant-quality assumption underlying the repeat sales approach becomes.

6.4 The following stochastic model explaining the logarithm of the value (price) p_n^t for property n in period t can be found in the literature:

$$\ln p_n^t = P^t + H_n^t + \varepsilon_n^t$$ \hspace{1cm} (6.1)

where P^t is a common term for all properties (the log of “price level” in some region or city), H_n^t is a Gaussian random walk that represents the drift in individual housing value over time, and ε_n^t is a random error term or white noise. Model (6.1) is often taken as the starting point for deriving the estimating repeat sales equation.

6.5 Another point of departure could be the constrained log-linear hedonic model (5.4), where the parameters β_k of the price-determining characteristics are constrained to be fixed over time. As “identical” properties are compared, there is a second restriction involved: the (amounts of the) characteristics of an individual property are also assumed fixed over time. Denoting the k’th characteristic for property n by z_{nk} the constrained log-linear model now becomes

$$\ln p_n^t = \beta_n^0 + \sum_{s=1}^{k} \beta_s z_{nk} + \varepsilon_n^t$$ \hspace{1cm} (6.2)

6.6 A model for the logarithm of the change in value of property n between two periods, say s and t ($0 \leq s < t \leq T$), is found by subtracting (6.2) for those periods. It follows that

$$\ln p_n^t - \ln p_n^s = \ln(\frac{p_n^t}{p_n^s}) = (\beta_n^0 - \beta_n^s) + (\varepsilon_n^t - \varepsilon_n^s)$$

$$= \ln P^t + (\varepsilon_n^t - \varepsilon_n^s)$$ \hspace{1cm} (6.3)

Model (6.3) is essentially saying that, neglecting the error term $\varepsilon_n^t - \varepsilon_n^s$, the logarithm of the price change is the same for all properties, denoted by P^t.

6.7 Now suppose we have a sample of houses that have been sold more than once over the sample period $t = 0, ..., T$ for which we have data on transaction prices, hence on their price changes. The (holding) period between subsequent sales will differ among those properties. However, given that in model (6.3) all individual property prices are expected to change at the same rate (excluding random disturbances), the repeat sales data can be pooled and the model estimated with the standard repeat sales equation

$$\ln(p_n^t / p_n^s) = \sum_{s=1}^{t} y_s D_{ts} + \mu_n$$ \hspace{1cm} (6.4)

where D_{ts} is a dummy variable with the value 1 in the period that the resale occurs, -1 in the period that the previous sale occurs, and 0 otherwise; μ_n is again an error term. (4)

Under the so-called classical assumptions, in particular

(1) The FHFA was established in 2008 as a combination of the former US Office of Federal Housing Enterprise Oversight (OFHEO), who published the repeat sales index until then, and the Federal Housing Finance Board (FHFB).

(2) The Dutch Land Registry computed a repeat sales index for the Netherlands until 2007 when they changed over to a SPAR index, which is published jointly with Statistics Netherlands. For the SPAR method, see Chapter 7.

(3) However, the use of geospatial data to allow for spatial dependence in the hedonic equation could remedy the omitted locational variables problem; see Chapter 5 and Hill (2011) for more details.

(4) Multiple resales are treated as independent observations. As noted by Shiller (1991), this should not be overly problematic because there is no overlap between the holding periods of multiple resales.
that the errors have a zero mean and constant variance, equation (6.4) can be estimated by OLS regression. Some multicollinearity may be present in the data, but solutions to remedy this issue are limited if this is the case.

6.8 The repeat sales index going from period 0 to period \(t \) is obtained by exponentiating the corresponding regression coefficients \(\gamma 't \):

\[P_{st}^0 = \exp(\gamma 't) \] (6.5)

The simplicity and attractiveness of the standard repeat sales model resides on the fact that it only requires dummy variables; no characteristics data other than the location (address) are needed. This, coupled with the straightforward way to compute the repeat sales price index, might explain part of the popularity of the method in the real estate and housing literature.

6.9 Wang and Zorn (1997) derived an analytical expression for the repeat sales index. It appears to have a rather complex geometric structure. Thus, despite the fact that the idea of matching is easily understood, the method may be difficult to explain in detail. Moreover, as mentioned earlier, a geometric property price index may be undesirable as a target, especially for a stock RPPI. A solution could be the use of an arithmetic version of the repeat sales method, which was suggested by Shiller (1991). Standard and Poor’s (Case-Shiller) Home Price Indices are based on the arithmetic repeat sales method (see Standard and Poor’s, 2009).

Issues and Improvements to the Basic Model

6.10 In this section we will discuss a number of issues related to the repeat sales method and give a brief overview of extensions and improvements to the basic model that have been proposed in the literature.

Data Cleaning

6.11 In practical applications, properties that were resold very rapidly as well as those that were not resold for long periods, have sometimes been excluded from the repeat sales regressions as such transactions might be “atypical” and therefore bias the resulting price index. Clapp and Giacotto (1998) and Steele and Goy (1997) suggested eliminating very short holds from the dataset as these could be

Heteroskedasticity

6.12 Reproducibility is one of the strengths of the repeat sales method. But if the procedure for excluding “atypical” observations differs from time to time, then reproducibility might be compromised.

6.13 Case and Shiller (1987, 1989) argued that changes in house prices include components whose variance increases with the interval of sales, so that the assumption of a constant variance of the errors is violated. They proposed a Weighted Least Squares (WLS) approach to correct for this type of heteroskedasticity. The weights are derived by regressing the squared residuals from the standard (OLS) repeat sales regression on an intercept and the time interval between sales. A modified version of their weighted repeat sales approach is used by the US Federal Housing Finance Agency to construct quarterly price indices for single-family homes. It can be argued that the error variance will be non-linear in time intervals (Calhoun, 1996), hence the squared OLS residuals are regressed on an intercept term, the time interval and the square of the time interval.

6.14 Some studies found ambiguous results for heteroskedasticity adjustment. Leishman, Watkins and Fraser (2002), using Scottish data, and Jansen et al. (2008), using Dutch data, applied the standard (OLS) repeat sales method and various weighted methods. Both studies concluded that the standard method was not inferior.

Sample Selection Bias

6.15 An important problem with repeat sales indices is the possibility of sample selection bias. The problem is that some types of houses may trade more frequently on the market than other types so that they will be over-represented in the repeat sales sample (with respect to the stock of houses or the sales during some period). When these types of houses exhibit different price changes, then the repeat sales index tends to be biased. For example, if low quality houses sell more frequently than high quality houses but high quality houses rise in price at a slower rate, a repeat sales index will tend to have an upward bias.

6.16 There are various reasons why the holding duration of properties can be unevenly distributed. Life-cycle theories on property holding periods suggest that less expensive houses are traded more frequently; when people move up the property ladder they will tend to move home less often. Lower transaction costs for less expensive properties, for instance due to lower stamp duties, may also
result in a higher turnover rate of less expensive homes. In addition, the Buy-to-Let market in some countries is more active in lower ranges of the price segments.

6.17 Quite a few studies addressed the issue of holding duration and sample selection bias in repeat sales price indices; see for example Case, Pollakowski and Wachter (1991) (1997), Cho (1996), Clapp, Giacotto and Tirtiroglu (1991), Gatzlaff and Haurin (1997), Hwang and Quigley (2004), and Steele and Goy (1997). Not all of these studies found strong evidence of sample selection bias. Clapp, Giacotto and Tirtiroglu (1991) did not find any systematic differences between the repeat sales sample and the full sample of transactions over the long run. They argued that arbitrage typically forces prices for the repeat sample to grow at the same rate as the prices for the full sample. Wallace and Meese (1997) concluded that their repeat sales sample was sufficiently representative of all sales during the sample period in question. However, the “sample” of all housing sales themselves may not be representative of the total housing stock.

6.18 Potential sample selection problems are inherent to the repeat sales method. To some extent they can be corrected for by stratifying the repeat sales sample. A problem in this context is that the sub-samples may become very small and produce volatile indices. Thus there may be an argument for smoothing the index numbers. Moreover, it can be argued that selling prices do not always exactly represent the market values of the properties, which can be viewed as a latent variable. There may be transaction noise involved that causes volatility of the measured price indices. Francke (2010) proposed a smoothing procedure that takes into account the fact that selling prices of repeatedly sold properties depend on the time interval between subsequent sales.

Inefficiency and Revision

6.19 The repeat sales method is often criticized for being inefficient since, by its nature, it is wasteful of data. This is true compared with the multi-period time dummy hedonic method: since only housing units that have sold more than once are used with the repeat sales method, the resulting data set is usually much smaller than the sample of transactions over a given period. On the other hand, the longer the sample period, the more data will be used by the repeat sales method (as more and more houses will have been resold). Thus, when the sample period grows and more data are added, the efficiency of the repeat sales method will increase faster than that of the hedonic approach. Besides, the repeat sales method is efficient in the sense that it does not use any other housing characteristics than the unit’s address.

6.20 It is possible to augment a repeat sales dataset by using assessment data (also referred to as appraisals) as approximations for past or current values of houses that have not been resold during the sample period. Some of the data on which the repeat sales index would then be based would be pseudo rather than genuine repeat data. Most empirical studies on this issue are based on appraisals of dwellings that are about to be re-financed. It has been suggested that appraisals tend to over-estimate the actual selling price of the property. But the magnitude of the bias could depend on the purpose for which assessment information is collected. De Vries et al. (2009) investigated the reliability of the Dutch appraisal data, which are collected on the government’s behalf for income and local tax purposes, and concluded that the quality was quite satisfactory and even improving over time. For more on the use of assessment information in a repeat sales index and the removal of appraisal bias, see for example Geltner (1996), Edelstein and Quan (2006), and Leventis (2006).

6.21 Similar to the multi-period time dummy method, the repeat sales method suffers from revision of previously computed indices: when additional repeat sales information becomes available, re-estimation will result in changes to the estimated coefficients and thus in the price indices inferred. There have been few empirical studies on this issue to date, e.g. Clapp and Giacotto (1999), Butler, Chang and Crews Cutts (2005), and Clapham et al. (2006). The last authors found evidence to suggest that repeat-sales indices are relatively less stable than time dummy hedonic indices. Note that revisions may be related to sample selection bias; when the sample period is extended and the coefficients re-estimated, sample selection bias might decrease as the number of observed repeat sales increases.

Quality Change

6.22 Repeat sales indices are estimated on the premise that the quality of the individual properties (as measured by their characteristics) is unchanging over time. It is sometimes argued that in the aggregate, the value of renovations is approximately equal to the value of depreciation. For individual dwelling units, however, this cannot be true because over time, many units are demolished. One way to avoid this issue is to limit the sample of repeated sales observations to those units for which their quality is thought to be relatively constant from one sale period to the next. Case and Shiller (1989), for example, “extracted […] data on houses sold twice for which there was no apparent quality change”. The problem is that the price changes inferred may not be indicative of the price changes for the full sample of repeated sales and may exacerbate the sample selection bias problem. (6)

(6) Meese and Wallace (1997) report that repeat sales units with changed characteristics tend to be larger and in worse condition than the average of units with single transactions.
6.23 If information on maintenance and renovation expenditures was available at the micro level, this could be used in the context of estimating a repeat sales (or hedonic) regression model for housing. In practice this kind of information is often lacking. Abraham and Schauman (1991) suggested adjusting the repeat sales index from aggregate data on renovation expenditures and make an adjustment for depreciation of the structures; see also Palmquist (1980) (1982). This approach to measuring net depreciation seems too crude and arbitrary to be suitable for the compilation of official statistics, however.

6.24 Shimizu, Nishimura and Watanabe (2010) recently developed a repeat sales method that takes net depreciation into account. Their method relies on an unknown parameter for which a guesstimate has to be made. While making an adjustment seems to be better than completely ignoring the (net) depreciation problem, making guesses might not be an attractive option for statistical agencies.

6.25 Shiller (1993a) developed a repeat sales method that accounts for possible changes in housing characteristics between first and second sales. The method involves including characteristics in a traditional repeat sales model. Clapp and Giaccotto (1998) advocated the use of assessed values at time of first and second sales as a parsimonious control for quality changes of the properties. Goetzmann and Spiegel (1997) suggested including a constant term in the repeat-sales regression to capture average quality change across all characteristics over the average holding period.

6.26 Case and Quigley (1991) were the first to advocate hybrid models. Hybrid models exploit all sales data by combining repeat sales and hedonic regressions and address not only the quality change problem but also sample selection bias and inefficiency problems. Case and Quigley (1991) and Quigley (1995) used samples of single-sale and repeat-sale properties to jointly estimate price indices using generalized least squares regression. Hill, Knight and Sirmans (1997) undertook a similar though more general exercise. Their model stacks two equations, a time dummy hedonic model (including age of the dwelling) and a repeat sales model, which are jointly estimated using maximum likelihood. They used a characteristics prices method to derive the price indices; see Chapter 5, equation (5.9). (7)

6.27 The rationale for hybrid methods is to try and combine the best features of the repeat sales and hedonic approaches. By combining both approaches, no data are discarded while repeat sales are still allowed to play a prominent role in the index construction methodology. However, we agree with Hill (2011) who has difficulty accepting that a repeat-sales price relative should be preferred to an (say double) imputation hedonic price relative. He notes that: “If repeat-sales price relatives are not deemed more reliable than double imputation price relatives, there is no reason to prefer hybrid methods to hedonic methods”. In the end, the complexity of hybrid models most likely makes them unsuitable for implementation by statistical agencies.

Main Advantages and Disadvantages

6.28 Below, the main advantages and disadvantages of the repeat sales method are listed. The main advantages are:

- The repeat sales method in its basic form needs no characteristics other than address of the properties that are transacted more than once over the sample period. Source data may be available from administrative records such as those from the Land Registry.
- Standard repeat sales regressions are easy to run and the price indices easy to construct.
- The repeat sales method is a matched-model type of method without any imputations. By construction, location is automatically controlled for.
- The results are essentially reproducible provided that the treatment of outliers and possible corrections for heteroskedasticity (as well as the choice between a geometric or arithmetic method) are clearly described.

6.29 The main disadvantages of the repeat sales method are:

- The method is inefficient in the sense that it does not use all of the available transaction prices; it uses only information on units that have sold more than once during the sample period.
- The basic version of the method ignores (net) depreciation of the dwelling unit. (8)
- There may be a sample selection bias problem in repeat sales data.
- The method cannot provide separate price indices for land and for structures.
- The method cannot be used if indices are required for very fine classifications of the type of property sold. In particular, if monthly property price indices are required, the method may fail due to a lack of market sales for smaller categories of property.
- In principle, estimates for past price change obtained by the repeat sales method should be updated as new transaction information becomes available. Thus the repeat

(7) Other papers on the use of hybrid models include Clapp and Giaccotto (1992), Knight, Dombrow and Sirmans (1995), Englund, Quigley and Redfearn (1998), and Hwang and Quigley (2004).

(8) As mentioned previously, there are ways to deal with this problem but they all appear to be too crude or too complex to be used for the compilation of official statistics.
sales property price index could be subject to perpetual revision.(9)

6.30 Haurin and Hendershott (1991) summarize the disadvantages of the repeat sales method as follows:

“The method is subject to many criticisms: (1) it does not separate house price change from depreciation, (2) renovation between sales is ignored, (3) the sample is not representative of the stock of housing, (4) attribute prices may change over time, and (5) a large number of sales are required before a reasonable repeat-sales sample is obtained.” Donald R. Haurin and Patric H. Hendershott (1991; 260)

The fifth criticism in this quotation – the large number of sales required to obtain a reasonable data set with repeat sales – was not mentioned thus far. In the next section a basic OLS repeat sales index will be constructed using the data for the town of “A” that was used earlier in Chapters 4 and 5 to show the effect of having a very small repeat sales data set.

An Example Using Data for the Town of “A”

6.31 Recall that, after deleting houses which were older than 50 years at the time of sale and also deleting observations which had land areas greater than 1200 m², we were left with 2289 sales in the 14 quarter sample period, starting in the first quarter of 2005 and ending in the second quarter of 2008. That is, we had an average of 163.5 single sales of detached dwelling units per quarter for the Dutch town of “A”. A few houses were sold twice during the same quarter, and we deleted those short holds for the estimation of the repeat sales index (as they could be distressed sales). We ended up with only 85 repeat sales over the 14 quarter period. The OLS repeat sales index computed using this small data set, labeled as P_{rs}, is plotted in Figure 6.1 along with the chained stratified sample mean Fisher index, P_{CH}, described in Chapter 4 and the hedonic imputation Fisher index, P_{IF}, described in Chapter 5. These three price series are listed in Table 6.1.

Figure 6.1. Repeat Sales Price Index, Chained Stratified Sample Fisher Price Index and Hedonic Imputation Fisher Price Index

![Graph of price indices](image)

Source: Authors’ calculations based on data from the Dutch Land Registry

(9) In practice, this is not necessarily a big problem. A similar problem occurs when monthly scanner data are used in a CPI; a moving window of observations can be used to construct a monthly CPI component where only the incremental inflation rate for the last month is used to update the index; see Ivancic, Diewert and Fox (2011) and de Haan and van der Grient (2011).
Table 6.1. Repeat Sales Price Index, Chained Stratified Sample Mean Fisher Price Index and Hedonic Imputation Fisher Price Index

<table>
<thead>
<tr>
<th>Quarter</th>
<th>(P_{RS})</th>
<th>(P_{FCH})</th>
<th>(P_{HIF})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.00000</td>
<td>1.00000</td>
<td>1.00000</td>
</tr>
<tr>
<td>2</td>
<td>1.00650</td>
<td>1.02396</td>
<td>1.04356</td>
</tr>
<tr>
<td>3</td>
<td>1.02802</td>
<td>1.07840</td>
<td>1.06746</td>
</tr>
<tr>
<td>4</td>
<td>1.02473</td>
<td>1.04081</td>
<td>1.03834</td>
</tr>
<tr>
<td>5</td>
<td>1.03995</td>
<td>1.04083</td>
<td>1.04794</td>
</tr>
<tr>
<td>6</td>
<td>1.04206</td>
<td>1.05754</td>
<td>1.07553</td>
</tr>
<tr>
<td>7</td>
<td>1.08663</td>
<td>1.07340</td>
<td>1.09460</td>
</tr>
<tr>
<td>8</td>
<td>1.07095</td>
<td>1.06706</td>
<td>1.06158</td>
</tr>
<tr>
<td>9</td>
<td>1.14474</td>
<td>1.08950</td>
<td>1.10174</td>
</tr>
<tr>
<td>10</td>
<td>1.15846</td>
<td>1.11476</td>
<td>1.10411</td>
</tr>
<tr>
<td>11</td>
<td>1.12709</td>
<td>1.12471</td>
<td>1.11430</td>
</tr>
<tr>
<td>12</td>
<td>1.13689</td>
<td>1.10483</td>
<td>1.10888</td>
</tr>
<tr>
<td>13</td>
<td>1.14903</td>
<td>1.10450</td>
<td>1.09824</td>
</tr>
<tr>
<td>14</td>
<td>1.12463</td>
<td>1.11189</td>
<td>1.11630</td>
</tr>
</tbody>
</table>

Source: Authors’ calculations based on data from the Dutch Land Registry

6.32 Compared to the other two price indices, the repeat sales index turns out to be highly erratic during the second half of the sample period. In quarter 14, the repeat sales index shows a price decrease whereas the hedonic imputation and stratified sample means indices measure a price increase. Of course we cannot draw any definitive conclusions from this simple example, but it does confirm that repeat sales methods require a large number of observations to estimate price indices with acceptable precision.
This page intentionally left blank
Introduction

7.1 As was mentioned in previous chapters, the matched model methodology to construct price indices, where prices of identical items are compared over time, cannot be applied in the housing context. One of the reasons is the low incidence of re-sales and the resulting change in the composition of the properties sold. The repeat sales method, which was discussed in Chapter 6, attempts to deal with the quality mix problem by looking at properties that were sold more than once over the sample period. However, using only repeat-sales data could be very inefficient since all single sales observations are “thrown out” and could also lead to sample selection bias.

7.2 In several countries information on assessed values or appraisals of properties is available, which might be useful as proxies for selling prices or, more generally, market values. In countries where they have been collected for tax purposes, appraisals will typically be available for all properties at a particular reference period. In a number of studies assessed values were used in addition to sale prices in a repeat sales framework to reduce the problem of inefficiency and the potential problem of sample selection bias. For example, Gatzlaff and Ling (1994) used sale prices as the first measure and appraisals as the second measure in a repeat “sales” regression. Clapp and Giaccotto (1998) did the reverse and used appraisals as the first and selling prices as the second measure. Both studies found that these methods produced price indices similar to a standard repeat sales index.

7.3 The above assessed-values repeat sales methods are based on pseudo price relatives in which the appraised values may be derived from different periods. But when assessed values for all properties are available that do relate to a single valuation period or reference date, then it will be possible to use the standard matched model methodology. For each property sold in some comparison period for which we have a sale price, a base period “price” – the assessed value – is now available. Price relatives with a common base period – the valuation period – can then be constructed, and these sale price appraisal ratios can be aggregated using a standard index number formula, though some re-scaling may be required.

7.4 The use of a conventional matched model index number formula simplifies the computation of the index because there is no need to use econometric techniques to estimate the index or to adjust for compositional change, as is the case with hedonic and repeat sales methods; see Chapters 5 and 6. Another feature of the sale price appraisal ratio method (SPAR) method discussed in the present chapter is that it is free from revisions because there is no modeling and pooling of data involved. Thus, in contrast to the repeat sales method and the multiperiod time dummy hedonic method, previously computed price indices are not re-estimated when new sales data become available.

7.5 The SPAR method has been used in New Zealand since the early 1960s and is currently also used in several European countries, notably in Denmark, the Netherlands and Sweden. Given that a few countries around the world are actually using the SPAR method, it is not surprising that there is only a small though expanding literature available. It would appear that Bourassa, Hoesli and Sun (2006) were the first to publish a paper on this method. According to them, “the advantages and the relatively limited drawbacks of the SPAR method make it an ideal candidate for use by government agencies in developing house price indices”. Rossini and Kershaw (2006) found that the SPAR method outperformed several other methods in terms of reduced volatility of weekly index numbers. De Vries et al. (2009) reported a higher precision of monthly SPAR indices for the Netherlands compared with monthly repeat sales indices. Shi, Young and Hargreaves (2009) compared SPAR and repeat sales indices for New Zealand and found a rather low correlation on a monthly basis.

7.6 When the properties are reassessed and new appraisal data become available, the SPAR index can, and probably should be, rebased. A long-term index series is obtained by “splicing” the existing and new series. Properties in the Netherlands are currently being re-valued each year, which makes it possible to construct an annually chained RPPI, where the valuation period (which is January) serves as the link month. Shi, Young and Hargreaves (2009) argued that bias could arise from frequent reassessments. De Vries et al. (2009) did not find any chain-link bias but observed that the standard error of the chained SPAR index increases each time new appraisals are introduced because an additional source of sampling error is added.

The SPAR Method in Detail

7.7 Suppose that we have samples of properties sold at our disposal for the starting or base period 0 and for comparison periods \(t (t = 1, \ldots, T) \). As in earlier chapters, the samples will be denoted by \(S(0) \) and \(S(t) \). In each period we know the sale prices of all sampled properties; the price of property \(n \) in period \(t \) is represented by \(p_{n}^{t} \). As mentioned before, houses that were sold in period \(t \) were generally not sold in period 0, so there is a lack of matching. However, suppose that assessed values or appraisals are available for all properties in the housing stock, and that they relate to a single valuation period. The valuation period will serve as the base period, and the appraisal for property \(n \) will be denoted by \(a_{n}^{0} \). Thus, for each property belonging to the period \(t \) sample \(S(t) \) we know both the period \(t \) selling price \(p_{n}^{t} \) and the base period assessed value \(a_{n}^{0} \). In other words, for all \(n \in S(t) \) we can establish a price relative – a sale price appraisal ratio – \(p_{n}^{t} / a_{n}^{0} \), which can be used in a matched model framework to compute an RPPI.
7.8 Although it would be possible to construct geometric appraisal-based indices, we will focus here on arithmetic indices as these seem to be more appropriate in the housing context. The arithmetic appraisal-based index can be defined as

\[P_{\text{SPAR}}^0 = \sum_{s \in S(0)} p_s^0 \left(\sum_{s \in S(0)} a_s^0 \right)^{-1} \]

Expression (7.1) describes a Paasche-type index because we are using the comparison period sample \(S(t) \) in both the numerator and the denominator. The quantities are equal to 1 as every property is basically a unique good. The construction of a Laspeyres-type price index would be problematic or even impossible: period \(t \) price information for dwelling units belonging to the base period sample \(S(0) \) is only available for those few units, if any, that were resold in period \(t \). This means that the construction of a Fisher-type index will not be feasible either. As shown by the second expression, (7.1) can be written as a value-weighted average of the sale price appraisal ratios \(p_s^t / a_s^t \), where the weights \(w_s^t(t) = a_s^t / \sum_{s \in S(t)} a_s^t \) reflect the base period assessed value shares with respect to the sample \(S(t) \).

7.9 The appraisal-based Paasche-type index, \(P_{\text{SPAR}}^t \), given by (7.1) is obviously a matched model index. Accordingly, there is no compositional change to account for when comparing period \(t \) directly with period 0. However, as there is generally no overlap, the samples \(S(t) \) in periods \(t = 1, ..., T \) will be completely different and compositional change will be present from one period to the next. Those period to period sample mix changes cannot be adjusted for, which suggests that short-term volatility will most likely occur. This feature is not unique to the appraisal-based index; we would expect to observe more or less the same for the Paasche-type hedonic imputation indices discussed in Chapter 5. The similarity with the imputation Paasche index will be addressed in the next section.

7.10 The appraisal-based price index (7.1) does not make use of the observed selling prices in the base period. As a result, the index will differ from 1 in the base period, which is problematic. However, this problem can easily be resolved by normalizing the indices by dividing them by the base period value. We then obtain the following arithmetic SPAR index:

\[P_{\text{SPAR}}^t = \sum_{s \in S(t)} p_s^t / N(t) \left(\sum_{s \in S(t)} a_s^t / N(t) \right) \]

where \(N(0) \) and \(N(t) \) denote the number of properties sold in periods 0 and \(t \) (the respective sample sizes).

7.11 The second expression on the right-hand side of (7.2) writes the SPAR index as the product of sample means and a bracketed factor. Since the SPAR method is a matched model method (with respect to periods 0 and \(t \)), the bracketed factor adjusts the ratio of sample means for compositional changes occurring between each period \(t \) and the base period 0. So, while short-term volatility is likely to be present due to period to period mix changes, the SPAR method is expected to exhibit much less volatility than the ratio of sample means.

7.12 The arithmetic SPAR index can be interpreted as a proxy for a sales based Paasche RPPI. But many countries, including EU member states, are typically aiming at a Laspeyres index rather than a Paasche index. Stratification could be used as a means to approximate this target index while using the SPAR method. The SPAR (Paasche) indices at the stratum level will then be aggregated using base period expenditure share weights to obtain the overall "Laspeyres-type" index. The RPPI in the Netherlands is an example of such a stratified SPAR approach, where region and type of house are used as stratification variables. The index is compiled monthly and published jointly with the Dutch Land Registry Office. Stratification might also help to account for any systematic differences between appraisals and market values across regions or different types of houses (de Vries et al., 2009; de Haan, van der Wal and de Vries, 2009).

7.13 The SPAR index can alternatively be interpreted as a sample estimator of a stock RPPI. If in each period the properties sold are viewed as random samples from the base period housing stock, then the SPAR index is an estimator of the Laspeyres stock RPPI. Properties sold that were added to the stock after the base period should in this case be excluded. As mentioned in earlier chapters, the sample of houses sold may not be representative of the total stock so that sample selection bias could arise. Stratification will again be a helpful tool to mitigate this problem.
Methodological and Practical Issues

Quality Change

7.14 Since the appraisals relate to the base period, in general the properties will have been valued at their base period characteristics. But for the SPAR index (7.1) to be a constant quality price index, the appraisals should be evaluated at characteristics of the comparison period. Thus, if housing characteristics change over time, the SPAR method will not adjust for those changes, similar to the repeat sales method. This is an important drawback.

7.15 Yet in practice there could be some implicit adjustment for quality changes. In the case of the New Zealand SPAR index, Bourassa, Hoesli and Sun (2006) note: “the base appraisal is adjusted for subsequent improvements to the property that require a building permit”. If this is done in real time, adjustments for major quality improvements will indeed be made. However, apart from the fact that not all property improvements require a building permit, it is unlikely that these adjustments adequately deal with the net effect of improvements and depreciation of the structures.

7.16 In the Netherlands there may also be some implicit quality adjustment in the SPAR index. The assessments are typically carried out some time after the appraisal reference month and may take into account major improvements to the properties. Furthermore, as mentioned above, the assessments are nowadays performed every year. Annual chaining by itself could alleviate the problem of quality change if the updated appraisals properly account for changes in the characteristics. Of course this will depend on the exact way the properties are valued, which may not be known to the index compilers.

Quality of the Assessment Information

7.17 Abstracting now from quality adjustment issues, the SPAR method is obviously dependent on the quality of the assessment information. There are three broad ways in which assessments of (non-traded) properties can be carried out: by using hedonic regression, by comparing them to similar traded properties, and by expert judgment. The methods used differ among countries and sometimes even within a particular country. In various countries, private companies are engaged in mass appraisal. Although the details of the methods used are often not publicly available, some of those companies appear to combine hedonic regression with local market information or expert judgment.

7.18 Bourassa, Hoesli and Sun (2006) noted that the appraisals in New Zealand are derived from hedonic regressions, but unfortunately they did not present the exact method. In Chapter 5 it was explained that there are different hedonic approaches and that the predicted prices – in this case the appraisals – depend on the type of data used and the number of observations, the specified functional form, the variables included and other choices made. Thus, even though hedonic regression is the least arbitrary of the three assessment methods mentioned above, there can still be a lot of uncertainty and error involved, which has an unknown impact on the sale price appraisal ratios and the resulting SPAR index.

7.19 The use of comparable properties seems to be widespread. Chinloy, Cho and Megbolugbe (1997) compared a sample of U.S. private sector appraisals to selling prices. They suspected that the reliance on a relatively small number of comparable houses leads to more volatility than can be observed in market-wide selling prices. More importantly perhaps, they found that appraisals exceeded sale prices in approximately 60 percent of the cases, leading to an average upward bias of two percent.

7.20 In countries where official assessments are designed for property taxation purposes, like in the Netherlands, the assessed values may not to be too far off the mark since the government has an incentive to make the assessments as large as possible in order to maximize tax revenue while taxpayers have the opposite incentive to have the assessments as small as possible. In the Netherlands the municipalities are responsible for making the assessments. The methods used differ across the municipalities. Some of them, for example the capital city of Amsterdam, use the comparable house method whereas others apparently use some kind of hedonic regression method. De Vries et al. (2009) argued that Dutch authorities may in fact have an incentive to make the assessments not too high to avoid court procedures because households who feel the appraised value is too high can lodge an appeal.

Other Issues

7.21 The advantage of the SPAR method as compared to hedonic regression methods is that information on only a few property characteristics is needed: assessed values (relating to a common reference period), possibly some stratification variables, and addresses to merge the data files if the selling prices and appraisals come from different sources. In the Netherlands, for example, transaction prices and a limited number of stratification variables are recorded by the Land Registry whereas the appraisals are from a second administrative data source. It is well known that merging data files by address can be difficult, although in the Netherlands this does not seem to be a major issue.
7.22 Data cleaning is another important practical issue. The SPAR method is dependent on the quality of the appraisals. Some of the sale price appraisal ratios might be found implausible, perhaps because the appraisals are deemed “wrong,” and deleted from the data set. Deleting erroneous observations, such as obvious entry errors, is good practice. A cautious approach is called for, however, as deleting price relatives can lead to biased results. At least a rule for deleting outliers should be explicitly formulated to inform users.

A Regression-Based Imputation Interpretation

7.23 In this section we will show that the SPAR method is essentially an imputations approach in which the “missing” base period prices are estimated from a linear regression of selling prices on appraisals. Recall first that the base period prices of the properties belonging to the period \(t \) sample \(S(t) \) cannot be observed directly since those properties were generally not traded in period 0. We can try to estimate the “missing” prices to obtain the imputation Paasche price index

\[
P_{PI}^{(0)} = \sum_{n(t)} \frac{1 p_n^{(0)}}{\sum_{n(t)} 1 p_n^{(0)}}
\]

(7.3)

7.24 The imputed value \(\hat{p}_n^{(0)}(t) \) in (7.3) should predict the period 0 price for property \(n \), evaluated at its period 0 characteristics. Keeping the (quantities of the) characteristics fixed is necessary to adjust for quality change. The use of hedonic imputation was discussed in Chapter 5. Hedonic regression models explain the selling price of a property in terms of a set of price-determining characteristics that relate to the structure and the location. This section addresses a different type of regression-based imputation.

7.25 Consider the following two-variable regression model for the base period:

\[
p_n^{(s)} = \beta_0 + \beta_1 a_n^{(s)} + e_n^{(s)}
\]

(7.4)

Equation (7.4) is a simple descriptive model where selling prices are regressed on appraisals. We assume that this model is estimated by Ordinary Least Squares (OLS) on the data of the base period sample \(S(0) \). The predicted prices for \(n \in S(0) \) are

\[
\hat{p}_n^{(s)} = \hat{\beta}_0 + \hat{\beta}_1 a_n^{(s)}
\]

(7.5)

where \(\hat{\beta}_0 \) is the estimated intercept term and \(\hat{\beta}_1 \) the estimated slope coefficient. We expect to find \(\hat{\beta}_0 = 0 \) and \(\hat{\beta}_1 \approx 1 \) if the appraisal system works well. Equation (7.5) will be used below to predict the “missing” prices in the denominator of the imputation Paasche index (7.3).

7.26 For convenience we first rewrite (7.3) as

\[
P_{PI}^{(0)} = \frac{\sum_{n(t)} p_n^{(0)}/N(t)}{\sum_{n(t)} 1 p_n^{(0)}}
\]

(7.6)

In the second step of (7.6) we have used \(\sum_{n(t)} p_n^{(0)}/N(t) = \sum_{n(t) \in S(t)} \hat{p}_n^{(0)}(t)/N(t) \), which holds true because the OLS regression residuals sum to zero. The first problem we face is that the housing characteristics should be kept fixed when predicting the base period prices \(\hat{p}_n^{(0)}(t) \) for \(n \in S(t) \). This is obviously not possible using equation (7.5). Thus, the first assumption is that no quality change, and we accordingly replace \(\hat{p}_n^{(0)}(t) \) in (7.6) by \(\hat{p}_n^{(0)}(0) = \hat{p}_n^{(s)} \). Using (7.5) for both \(n \in S(0) \) and \(n \in S(t) \), equation (7.6) becomes

\[
P_{PI}^{(0)} = \frac{\sum_{n(t)} p_n^{(0)}/N(t)}{\sum_{n(t)} 1 p_n^{(0)}} \left[\hat{\beta}_0 + \hat{\beta}_1 \sum_{n(t)} a_n^{(0)}/N(t) \right]
\]

(7.7)

Notice that if \(\hat{\beta}_1 = 0 \), that is, if the regression line passes through the origin, (7.7) simplifies to the SPAR index (7.2), irrespective of the slope coefficient \(\hat{\beta}_1 \). So, if the aim is to estimate an imputation Paasche index, the second assumption underlying the SPAR method seems to be that the intercept term \(\hat{\beta}_0 \) is negligible.

7.27 The third assumption is that equation (7.5) holds for \(n \in S(t) \): the linear relationship between base period selling prices and appraisals postulated and estimated for the properties actually sold during the valuation or base period 0 (for \(n \in S(0) \)) is assumed to hold also for properties that were not sold. But this is a very restrictive assumption. While the linear relation can be tested for \(n \in S(0) \), it would be difficult if not impossible to test it for \(n \in S(t) \) as the selling prices are “missing.” The presence of appraisal bias, in the sense that the appraisals over- or underestimate the unknown market values (the prices at which the properties would have been sold), can bias the SPAR index. Bias in the SPAR index will particularly arise

(\(^{(*)}\) The example for the town of “A” at the end of this chapter shows that the removal of a relatively low number of outliers can have a substantial effect on the SPAR index.

(\(^{\dagger}\) If the selling prices would be used as official valuations, then of course the values 0 and 1 would exactly hold and we would find a perfect fit of (7.4) to the period 0 data.

(\(^{\dagger\dagger}\) Van der Wal, ter Steege and Kroese (2006) and de Vries et al. (2009) compared Dutch government appraisals to selling prices. In the latter study the linear relationship (7.4) was explicitly tested (for the properties traded in the valuation month) for various valuation months. It turned out that the constant term was indeed very small and that the slope coefficient did not significantly differ from 1.)
Main Advantages and Disadvantages

7.29 The merits of the SPAR method are listed below. The main advantages are:

- The SPAR method is essentially based on the standard matched model methodology and links up with traditional index number theory.
- The method is computationally simple.
- Information on housing characteristics is not required in order to implement this method; the only information required is data on sale prices and appraisals. In some countries the data is available from administrative sources such as the land registry, and usually covers all transactions (for resold properties).
- This method uses much more data than the repeat sales method and hence there are fewer problems due to sparse data. In particular, sample selection bias is likely to be smaller. Also, the SPAR method does not suffer from revision of previously calculated figures when new data becomes available.
- Conditional on the data cleaning rules, the SPAR method is reproducible.

7.30 The main disadvantages of the SPAR method are:

- The method cannot deal adequately with quality changes (major repairs or renovations and depreciation) of the dwelling units. (*)
- The SPAR method is dependent on the quality of the base period assessment information. The exact way the valuations are carried out may not always be clear and has an unknown impact on the results.
- The method cannot decompose the overall property price index into land and structures components. (**)
Figure 7.1 confirms that, using a relatively small data set which covers a short time period, the SPAR method generates more credible results than the standard repeat sales method, especially after cleaning the data.

7.35 A comparison of P_{SPAR} with the hedonic imputation Fisher index P_{HIF} reveals that in several periods, for example in the last four quarters, the price changes according to the two methods are in opposite directions. Also, P_{SPAR} is generally lower than P_{HIF}; at the end of the sample period, in quarter 14, the difference amounts to 0.026 index points. At first sight this seems to suggest that P_{SPAR} has a downward bias. However, a difference of the same magnitude (0.027 points) is already found in quarter 2. So if we had normalized both series to equal 1 in quarter 2, the two methods would have produced approximately the same index value in quarter 14. This is an illustration of a general starting problem encountered when comparing volatile time series: the choice of starting or base period affects the average difference during the sample period.

Figure 7.1. SPAR Index, Hedonic Imputation Fisher Price Index and Repeat Sales Index

Table 7.1. SPAR Index, Hedonic Imputation Fisher Price Index and Repeat Sales Index

<table>
<thead>
<tr>
<th>Quarter</th>
<th>P_{SPAR}</th>
<th>P_{HIF}</th>
<th>P_{RS}</th>
<th>P_{SPAR}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.00000</td>
<td>1.00000</td>
<td>1.00000</td>
<td>1.00000</td>
</tr>
<tr>
<td>2</td>
<td>1.01769</td>
<td>1.04356</td>
<td>1.00650</td>
<td>1.01693</td>
</tr>
<tr>
<td>3</td>
<td>1.05196</td>
<td>1.06746</td>
<td>1.02802</td>
<td>1.04204</td>
</tr>
<tr>
<td>4</td>
<td>1.02958</td>
<td>1.03834</td>
<td>1.02473</td>
<td>1.02883</td>
</tr>
<tr>
<td>5</td>
<td>1.02040</td>
<td>1.04794</td>
<td>1.03995</td>
<td>1.04273</td>
</tr>
<tr>
<td>6</td>
<td>1.09938</td>
<td>1.07553</td>
<td>1.04206</td>
<td>1.06655</td>
</tr>
<tr>
<td>7</td>
<td>1.09635</td>
<td>1.09640</td>
<td>1.08663</td>
<td>1.07076</td>
</tr>
<tr>
<td>8</td>
<td>1.08169</td>
<td>1.06158</td>
<td>1.07095</td>
<td>1.06604</td>
</tr>
<tr>
<td>9</td>
<td>1.10173</td>
<td>1.10174</td>
<td>1.14474</td>
<td>1.07378</td>
</tr>
<tr>
<td>10</td>
<td>1.11333</td>
<td>1.10411</td>
<td>1.15846</td>
<td>1.08609</td>
</tr>
<tr>
<td>11</td>
<td>1.08477</td>
<td>1.11430</td>
<td>1.12709</td>
<td>1.08396</td>
</tr>
<tr>
<td>12</td>
<td>1.10742</td>
<td>1.10888</td>
<td>1.13689</td>
<td>1.08869</td>
</tr>
<tr>
<td>13</td>
<td>1.13206</td>
<td>1.09824</td>
<td>1.14903</td>
<td>1.09642</td>
</tr>
<tr>
<td>14</td>
<td>1.08132</td>
<td>1.11630</td>
<td>1.12463</td>
<td>1.09003</td>
</tr>
</tbody>
</table>

Source: Authors’ calculations based on data from the Dutch Land Registry
Decomposing an RPPI into Land and Structures Components
Introduction

8.1 In Chapter 3 it was mentioned that for national accounts and CPI purposes, it will be useful or necessary to have a decomposition of the residential property price index (RPPI) into two components: a quality adjusted price index for structures and a price index for the land on which the house is built. The present chapter outlines how hedonic regression can be utilized to derive such a decomposition. Hedonic regression methods were discussed in Chapter 5.

8.2 Some economic reasoning will be helpful to derive an appropriate hedonic regression model. Think of a property developer who is planning to build a structure on a particular property. He or she will likely determine the selling price of the property after the structure is completed by first calculating the total expected cost. This cost will be equal to the floor space area of the structure, say S square meters, times the building cost per square meter, g say, plus the cost of the land, which will be equal to the cost per square meter, β say, times the area of the land site, L.

We follow a cost of production approach to modeling the property price. That is, the functional form for the hedonic price function is assumed to be determined by the supply side of the market, i.e., by independent contractors. (1)

8.3 Now consider a sample of properties of the same general type, which have structure areas S_i and land areas L_i, in period t for n = 1,..., N(t); the prices p_i, are equal to costs of the above types plus error terms ε_i, which are assumed to have means 0. This gives rise to the following hedonic regression model for period t where β and γ are the parameters to be estimated: (2)

\(p_i = \beta L_i + \gamma S_i + \epsilon_i \) (8.1)

The quantity of land L_i and the quantity of structures S_i, associated with the sale of property n in period t are the only two property characteristics included in this very simple model; the corresponding prices in period t are the price of a square meter of land \(\beta \) and the price of a square meter of structure floor space \(\gamma \). Separate linear regressions of the form (8.1) can be performed for each time period t in the sample.

8.4 The “builder’s model” (8.1) essentially relates to newly-built dwellings. To make it applicable to existing or resold houses we should account for the fact that older structures will be worth less than newer structures due to depreciation of the structures. Information on the age of the structure will therefore be needed. The next section shows how depreciation can be incorporated into the model, similar to what was done in the examples for the town of “A” presented in Chapter 5. It will also be shown how additional land and structures characteristics can be included as explanatory variables.

Accounting for Depreciation and Additional Characteristics

Depreciation

8.5 Suppose that in addition to information on the selling price of property n at time period t, \(p_{i,t} \), the land area of the property, \(L_{i,t} \), and the structure area, \(S_{i,t} \), information on the age of the structure at time t, say \(A_{i,t} \), is available. If straight line depreciation is assumed, the following model is a straightforward extension of (8.1) to include “existing” houses:

\[p'_{i,t} = \beta L_{i,t} + \gamma (1 - \delta A_{i,t}) S_{i,t} + \epsilon'_{i,t} \] (8.2)

where the parameter \(\delta \) reflects the (straight line) depreciation rate as the structure ages one additional period. If structure age is measured in years, \(\delta \) will probably be between 0.5% and 2%. This will be an underestimate of “true” depreciation because it will not account for major renovations or additions to the structure. The estimated straight line depreciation rate in (8.2) should therefore be interpreted as a net depreciation rate; i.e., a gross depreciation rate less the rate of renovations and additions to the structure. Model (8.2) will not work for very old structures since, if they are still in use, they will likely have been extensively renovated. (3)

8.6 Notice that (8.2) is a nonlinear regression model whereas (8.1) is a linear regression model. (4) Because the depreciation parameter \(\delta \) is regarded as fixed over time, (8.2) would have to be estimated as one nonlinear regression over all time periods in the sample, whereas model (8.1) can be run as a period by period linear regression. The period t price of land in model (8.2) will be the estimate for the parameter \(\beta \) and the price of a unit of a newly built structure for period t will be the estimate for (5)

(2) Following Muth (1971), Thorsnes (1997; 101) has a related cost of production model. He assumed that the value of the property under consideration in period t, \(p_t \), is equal to the price of housing output in period t, \(p_t \), times the quantity of housing output \(H_t(L_t, K_t) \) where the production function \(H_t \) is a CES function. Thus Thorsnes assumed that \(p_t = p_t H_t(L_t, K_t) = p_t [a_t + b_t K_t]^{1/\sigma} \) where \(p_t \), a_t and \(b_t \) are parameters, \(a_t \) is the lot size of the property and \(K_t \) is the amount of structures capital in constant quality units. Our problem with this model is that there is only one independent time parameter \(p_t \) whereas our model has two, \(\beta \) and \(\gamma \) for each t, which allow the price of land and structures to vary freely between periods.

(3) See for example Meese and Wallace (1991; 320) who found that the age variable in their hedonic regression model had the wrong sign.

(4) The model defined by (8.2) can be converted into a linear regression model.

\[\gamma'. \] The period \(t \) quantity of land for property \(n \) is \(L_n^t \) and the period \(t \) quantity of structures for property \(n \), expressed in equivalent units of a new structure, is \((1 - \delta t')S_n^t \), where \(S_n^t \) is the floor space area of property \(n \) in period \(t \).

8.7 Expensive properties probably have relatively large absolute errors compared to inexpensive properties, so it might be better to assume multiplicative rather than additive errors. However, we prefer an additive model specification as the purpose is to decompose the aggregate value of housing into the sum of structures and land components; the use of additive errors facilitates this decomposition. When there is evidence of heteroskedasticity, weighted regressions can be considered. Several researchers suggested hedonic regression models that lead to additive decompositions of a property price into land and structures components.\(^{(1)}\)

8.8 There is a potential problem with the above builder’s model, namely multicollinearity. Large structures are generally built on large plots of land, so that \(S_n^t \) and \(L_n^t \) could be highly collinear (i.e., the land-structure ratios \(L_n^t/S_n^t \) could be centered around a constant). This could give rise to unstable estimates of the quality adjusted prices \(\beta' \) and \(\gamma' \) for land and structures. As will be seen in the example using data for the Dutch town of “A”, the problems of multicollinearity and instability do indeed occur. In general, multicollinearity is not a major problem if the goal is to produce an overall house price index, but it is problematic if the goal is to produce separate price indices for land and structures components. Some possible methods for overcoming the multicollinearity problem will be suggested in later on.

8.9 The hedonic regression model (8.2) has the implication that the parameters would have to be re-estimated whenever the data for a new period became available. To overcome this problem, a “rolling window” approach could be applied. A suitable window length \(T \) would be chosen,\(^{(4)}\) the model defined by (8.2) or (8.3) would be estimated using the data for the last \(T \) periods, and the existing series for price of land and for price of structures would be updated using the chain link factors \(\beta T / \beta T+1 \) and \(\gamma T / \gamma T+1 \). This approach will be illustrated below.

Adding More Characteristics

8.10 The above basic nonlinear hedonic regression framework can be generalized to encompass the traditional array of characteristics used in real estate hedonic regressions. Suppose that we can associate with each property \(n \) transacted in period \(t \) a list of \(K \) characteristics \(x_{nkt}, x_{nkt+1}, \ldots, x_{nkt+k} \) that are price determining characteristics for the land on which the structure was built and a similar list of \(M \) characteristics \(y_{nkt}, y_{nkt+1}, \ldots, y_{nkt+k} \) that are price determining characteristics for the type of structure. The following equations generalize (8.2) to the present setup:\(^{(5)}\)

\[
p^t_n = \beta' \left[1 + \sum_{k=1}^{K} x_{nkt} \eta_k \right] L_n^t + \gamma' \left(1 - \delta t' \right) \left[1 + \sum_{m=1}^{M} y_{nkt} \lambda_m \right] S_n^t + \epsilon_t^t
\]

where the parameters to be estimated are now the \(K \) quality of land parameters, \(\eta_1, \ldots, \eta_K \), the \(M \) quality of structures parameters, \(\lambda_1, \ldots, \lambda_M \), the period \(t \) quality adjusted price for land \(\beta' \) and the period \(t \) quality adjusted price for structures \(\gamma' \). The quality adjusted amount of land, \(L_n^t \), and the corresponding quality adjusted amount of structures, \(S_n^t \), for property \(n \) in period \(t \) are defined as follows:

\[
L_n^t = \left[1 + \sum_{k=1}^{K} x_{nkt} \eta_k \right] L_n^t
\]

\[
S_n^t = \left[1 + \sum_{m=1}^{M} y_{nkt} \lambda_m \right] S_n^t
\]

8.11 To illustrate how \(X \) and \(Y \) variables can be formed, consider the list of explanatory variables in the hedonic housing regression model reported by Li, Prud’homme and Yu (2006; 23). The following variables in their list of explanatory variables can be viewed as variables that affect structures quality; i.e., they are \(Y \) type variables: number of bedrooms, number of bathrooms, number of garages, number of fireplaces, age of the unit, age squared of the unit, exterior finish is brick or not, dummy variable for new unit, unit has hardwood floors or not, heating fuel is natural gas or not, unit has a patio or not, unit has a central built in vacuum cleaning system or not, unit has a hot tub or not, unit has a sauna or not, and unit has air conditioning or not. The following variables can be assumed to affect the quality of the land; i.e., they are \(X \) type location variables: unit is at the intersection of two streets or not (corner lot or not), unit is at a cul-de-sac or not, shopping center is nearby or not, and various suburb location dummy variables.

8.12 Equations (8.3) and (8.4) show how the quality adjusted amounts of land and structures would be calculated if the goal is to construct price indices for the sales of properties of the type that are included in the hedonic regression model. If the goal is to construct price indices for the stock of properties of the type included in the regression, then the construction of appropriate weights becomes more complex. These weighting problems will be discussed in the next section.

\(^{(4)}\) The model becomes a modified adjacent period hedonic regression model for \(T = 2 \).

\(^{(5)}\) This generalization was suggested by Deweert (2007).
8.13 As was explained in Chapter 5, the construction of an RPPI for the sales of property using standard hedonic regression techniques is fairly straightforward. Typically, a separate hedonic regression of the type defined by (8.3) will be run for each locality or region in a country. (*) Recall that once a particular regression has been run, period \(t \) quality adjusted prices for land, \(P_t' \), and for structures, \(P_t'' \), for the region under consideration can be defined in terms of the estimated parameters for the model as follows:

\[
P_t' = \beta' + \gamma (8.5)
\]

\[
P_t'' = \gamma (8.6)
\]

The corresponding quality adjusted quantities of land and structures for the region, say \(Q_r' \) and \(Q_r'' \) can also be defined in terms of the estimated parameters using definitions (8.4) above as follows:

\[
Q_t' = \sum_{n=1}^{N_r} \sum_{m=1}^{M_r} \left[1 + \sum_{k=1}^{K_r} X_{mk} \eta_k \right] L_{nm} (8.7)
\]

\[
Q_t'' = \sum_{n=1}^{N_r} \sum_{m=1}^{M_r} \left[1 + \sum_{k=1}^{K_r} Y_{mk} \lambda_k \right] S_{nm} (8.8)
\]

8.14 If hedonic regressions, for say \(R \) regions, of the type defined by (8.3) have been run for the \(T \) periods of data, then the algebra associated with (8.5)-(8.8) can be repeated for each region \(r \). Denote the resulting prices and quantities for region \(r \) that are the counterparts to (8.5)-(8.8) by \(P_{rT}' \), \(P_{rT}'' \), \(Q_{rT}' \) and \(Q_{rT}'' \) for \(r = 1, \ldots, R \) and \(t = 1, \ldots, T \). Now Fisher (sales) RPPIs for land can be constructed using the regional price and quantity data for land, \(P_t' = [P_1', \ldots, P_T'] \) and \(Q_t' = [Q_1', \ldots, Q_T'] \), for each time period \(t = 1, \ldots, T \). Similarly, Fisher (sales) RPPIs for structures can be constructed using the price and quantity data for structures in each period \(t \), \(P_t'' = [P_1'', \ldots, P_T'' \] \) and \(Q_t'' = [Q_1'', \ldots, Q_T'' \] \), for \(t = 1, \ldots, T \). (*)

8.15 As was the case with stratification methods, it is now necessary to consider how to construct an RPPI for the stock of residential properties when hedonic regression methods are used. The period \(t \) hedonic cell prices \(P_{rT}' \) and \(P_{rT}'' \) defined by the region \(r \) counterparts to (8.5) and (8.6) can still be used as cell prices to construct stock price indices for land and structures, but the counterpart quantities \(Q_{rT}' \) and \(Q_{rT}'' \) defined by (8.7) and (8.8) are no longer appropriate; these quantities need to be replaced by estimates that apply to the total stock of dwelling units in the region (or some other reference population) for regression \(r \) at time \(t \), say \(Q_{rT}' \) and \(Q_{rT}'' \), for \(r = 1, \ldots, R \). Thus, the counterpart summations in (8.7) and (8.8) are now taken over the entire stock of dwellings in region \(r \) in period \(t \) instead of just the dwelling units that were sold in period \(t \). Period \(t \) information on the quantity of land \(L_{nm} \) for every unit \(n \) in the region that is in scope for the hedonic regression model \(m \) is now required, along with the accompanying characteristics information \(X_{nm} \) for every land characteristic \(k \), as well as data on the quantity of the structures \(S_{nm} \), along with the accompanying characteristics information \(Y_{nm} \) for every structures characteristic \(m \). With these new population quantity weights, the rest of the details of the index construction are the same as was the case for the sales RPPI.

8.16 In order to construct appropriate period \(t \) population stock weights, it will be necessary for the country to have census information on the housing stock with enough details on each dwelling unit in the stock so that the required information on the quantity of land and structures and the accompanying characteristics can be calculated. If information on new house construction (plus the required characteristics data) and on demolitions is available in a timely manner, the census information can be updated and period \(t \) estimates for the constant quality amounts of land and structures, the \(Q_{rT}' \) and \(Q_{rT}'' \), can be approximated in a timely manner. Hence, stock RPPIs for land and structures can be constructed using Fisher indices, as was the case for the sales RPPI. If timely data on new construction and demolitions is unavailable, it may only be possible to construct fixed base Laspeyres type price indices using the quantity weights from the last available housing census.

8.17 If census information is not available at all (or if data on the characteristics of the dwelling units is missing), it still may be possible to approximate RPPIs for land and structures using hedonic regression techniques. If characteristics data on the residential properties that are sold in each period is stored over a large period of time, an approximate distribution of dwelling units by type can be constructed. This information may then be used to approximate a stock based RPPI in the manner explained above.

(*) Separate hedonic regressions may also be run for different types of property as well as for different locations. However, cost considerations may mean that a comprehensive system of regressions covering all properties in the country cannot be implemented so that there will only be a sample of representative hedonic regressions. The aggregation issues in the sampling case are too complex to be considered here; the exact details for constructing a national index would depend on the nature of the sampling design.

(*) As was the case for stratification methods, fixed base or chained indices could be constructed. Rolling window hedonic regressions could also be run. The rolling window approach will be explained later.
Main Advantages and Disadvantages

8.18 This section summarizes the main advantages and disadvantages of using hedonic regression methods to construct an RPPI for land and structure components. The main advantages are:

- If the list of available property characteristics is sufficiently detailed, the method adjusts for both sample mix changes and quality changes of the individual houses.
- Price indices can be constructed for different types of dwellings and locations through a proper stratification of the sample. Stratification has a number of additional advantages.
- The method is probably the most efficient method for making use of the available data.
- The method is virtually the only method that can be used to decompose the overall price index into land and structures components.

8.19 The main disadvantages of the hedonic regression approach are:

- The method is data intensive since it requires data on all relevant property characteristics (in particular, the age, the type and the location of the properties in the sample as well as information on the structure and lot size) so it is relatively expensive to implement.
- The method may not lead to reasonable results due to multicollinearity problems.
- While the method is essentially reproducible, different choices can be made regarding the set of characteristics entered into the regression, the functional form for the model, the stochastic specification, possible transformations of the dependent variable, etc., which could lead to varying estimates of overall price change.
- The general idea of the hedonic method is easily understood but some of the technicalities may not be easy to explain to users.

Application on Data for the Town of “A”: Preliminary Approaches

8.20 The general techniques explained in this chapter will now be illustrated using the data set for the Dutch town of “A”, which was described at the end of Chapter 4.

We have data on sales of detached dwellings for 14 quarters, starting in the first quarter of 2005. Recall the notation used above and in Chapters 4 and 5: there were \(N(t) \) sales of detached houses in quarter \(t \), where \(p_n^t \) is the selling price of house \(n \). There is information available on three characteristics: area of the plot in square meters, \(L_n^t \); floor space area of the structure in square meters, \(S_n^t \); and age in decades of house \(n \) in period \(t \), \(A_n^t \).

The Simple Case

8.21 The simple hedonic regression model defined by (8.2) will be estimated on this data set and is repeated here for convenience:

\[
\begin{align*}
\hat{p}_n^t &= \beta^\prime L_n^t + \gamma^\prime (1 - \delta A_n^t) S_n^t + \varepsilon_n^t, \\
\end{align*}
\]

(8.9)

The parameters to be estimated are \(\beta^\prime \) (i.e., the price of land in quarter \(t \)), \(\gamma^\prime \) (the price of constant quality structures in quarter \(t \)) and \(\delta \) (the common depreciation rate for all quarters). Model (8.9) has 14 unknown \(\beta^\prime \) parameters, 14 unknown \(\gamma^\prime \) parameters and one unknown \(\delta \) or 29 unknown parameters in all.(10)

8.22 The \(R^2 \) for this model was equal to .8847, which is the highest yet for regressions using the data set for the town of “A”. The log likelihood was -10642.0, which is considerably higher than the log likelihoods for the two time dummy regressions that used prices as the dependent variable; recall the regression results associated with the construction of indices \(P_t^1 \) and \(P_t^2 \) defined in Chapter 5 where the log likelihoods were -10790.4 and -10697.8. The estimated decade straight line net depreciation rate was 0.1068 (0.00284).

8.23 The estimated land price series \(\hat{\beta}_1, ..., \hat{\beta}_{14} \) (rescaled to equal 1 in quarter 1), labeled \(P_L \), and quality adjusted price series for structures \(\hat{\gamma}_1, ..., \hat{\gamma}_{14} \) (rescaled also), labeled \(P_S \), are plotted in Figure 8.1 and listed in Table 8.1. Using these price series and the corresponding quantity data for each quarter \(t \), i.e., the amount of land transacted, \(L' = \sum_{n=1}^{N(t)} L_n^t \), and the quantity of constant quality structures, \(S' = \sum_{n=1}^{N(t)} (1 - \delta A_n^t) S_n^t \), an overall property price index has been constructed using the Fisher formula. This overall index, labeled \(P \), is also plotted in Figure 8.1 and listed in Table 8.1. For comparison purposes, the Fisher hedonic imputation index from Chapter 5, \(P_{imp} \), is also presented.

(10) Model (8.9) is similar in structure to the hedonic imputation model described earlier except that the present model is more parsimonious; there is only one depreciation rate, as opposed to 14 depreciation rates in the imputation model defined by equations (5.25), and there is no constant term. The important factor in both models is that the prices of land and quality adjusted structures are allowed to vary independently across time periods.
8.24 It can be seen that the new overall hedonic price index based on a cost of production approach to the hedonic functional form, P_1, is very close to the Fisher hedonic imputation index $PHIF$. However, the price series for land, $PL1$, and the price series for quality adjusted structures, $PS1$, are not credible at all: there are large random fluctuations in both series. Notice when the price of land spikes upwards, there is a corresponding dip in the price of structures. This is a clear sign of multicollinearity between the land and quality adjusted structures variables, which leads to highly unstable estimates for the prices of land and structures.

The Use of Linear Splines

8.25 There is a tendency for the price of land per meter squared to decrease for large lots. In order to account for this, a linear spline model for the price of land
Decomposing an RPPI into Land and Structures Components

will be used.\(^{(1)}\) For lots that are less than 160 m\(^2\), it is assumed that the cost of land per meter squared is \(\beta^t\) in quarter \(t\). For properties that have lot sizes between 160 m\(^2\) and 300 m\(^2\), it is assumed that the cost of land changes to a price of \(\beta^t\) per additional square meter in quarter \(t\). Finally, for plots above 300 m\(^2\), the marginal price of an additional unit of land is set equal to \(\beta^t\) per square meter in quarter \(t\). Let the sets of sales of small, medium and large plots be denoted by \(S_s(t)\), \(S_m(t)\) and \(S_l(t)\), respectively, for \(t = 1, \ldots, 14\). For sales \(n\) of properties that fall into the small land size group during quarter \(t\), the hedonic regression model is given by (8.10); for the medium group by (8.11) and for the large land size group by (8.12):

\[
p^t_n = \beta^t_s L^t_s + \gamma^t(1-\delta^t)S^t_s + \epsilon^t_n, \quad t = 1, \ldots, 14; \quad n \in S_s(t) \tag{8.10}
\]

\[
p^t_n = \beta^t_m [160] + \beta^t_m [L^t_s - 160] + \gamma^t(1-\delta^t)S^t_s + \epsilon^t_n, \quad t = 1, \ldots, 14; \quad n \in S_m(t) \tag{8.11}
\]

\[
p^t_n = \beta^t_l [160] + \beta^t_l [140] + \beta^t_l [L^t_s - 300] + \gamma^t(1-\delta^t)S^t_s + \epsilon^t_n, \quad t = 1, \ldots, 14; \quad n \in S_l(t) \tag{8.12}
\]

8.26 Estimating the model defined by (8.10)-(8.12) on the data for the town of “A”, the estimated decade depreciation rate was \(\delta = 0.1041\) (0.00419). The R\(^2\) for this model was .8875, which is an increase of 28 from the previous no-splines model where the R\(^2\) was .8847. The log likelihood was -10614.2 (an increase of 28 from the previous model’s log likelihood.) The first period parameter values for the three marginal prices for land were \(\hat{\beta}^t_s = 281.4\) (55.9), \(\hat{\beta}^t_m = 380.4\) (48.5) and \(\hat{\beta}^t_l = 188.9\) (27.5). In other words, in quarter 1, the marginal cost per m\(^2\) of small lots is estimated to be 281.4 Euros per m\(^2\), for medium sized lots, the estimated marginal cost is 380.4 Euros/m\(^2\), and for large lots, the estimated marginal cost is 188.9 Euros/m\(^2\). The first period parameter value for quality adjusted structures is \(\hat{\gamma} = 978.1\) Euros/m\(^2\) with a standard error of 82.3. The lowest t statistic for all of the 57 parameters was 3.3, so all of the estimated coefficients in this model are significantly different from zero.

8.27 Once the parameters for the model have been estimated, then in each quarter \(t\), the predicted value of land for small, medium and large lot sales, \(V^t_s\), \(V^t_m\) and \(V^t_l\), respectively, can be calculated along with the associated quantities of land, \(L^t_s\), \(L^t_m\) and \(L^t_l\), as follows:

\[
v^t_s = \sum_{n \in S_s(t)} \hat{\beta}^t_s L^t_s \quad t = 1, \ldots, 14
\]

\[
v^t_m = \sum_{n \in S_m(t)} (\hat{\beta}^t_m [160] + \hat{\beta}^t_m [L^t_s - 160]) \quad t = 1, \ldots, 14
\]

\[
v^t_l = \sum_{n \in S_l(t)} (\hat{\beta}^t_l [160] + \hat{\beta}^t_l [140] + \hat{\beta}^t_l [L^t_s - 300]) \quad t = 1, \ldots, 14
\]

\[
l^t_s = \sum_{n \in S_s(t)} L^t_s \quad t = 1, \ldots, 14
\]

\[
l^t_m = \sum_{n \in S_m(t)} L^t_s \quad t = 1, \ldots, 14
\]

\[
l^t_l = \sum_{n \in S_l(t)} L^t_s \quad t = 1, \ldots, 14
\]

The corresponding average quarterly prices, \(P^t_s\), \(P^t_m\) and \(P^t_l\), for the three types of lot are defined as the above values divided by the above quantities:

\[
p^t_s = v^t_s / l^t_s; \quad p^t_m = v^t_m / l^t_m; \quad p^t_l = v^t_l / l^t_l \quad t = 1, \ldots, 14
\]

8.28 The average land prices for small, medium and large lots defined by equation (8.19) and the corresponding quantities of land defined by (8.16)-(8.18) can be used to construct a chained Fisher land price index, which is denoted by \(P^t_{LA}\). This index is plotted in Figure 8.2 and listed in Table 8.2. As before, the estimated quarter \(t\) price per meter squared of quality adjusted structures is \(\hat{\gamma}^t\) and the quantity of constant quality structures is given by \(S^t = \sum_{n \in S_s(t)} (1-\delta^t)S^t_s\). The structures price and quantity series \(\hat{\gamma}^t\) and \(S^t\) were combined with the three land price and quantity series to form a chained overall Fisher house price index \(P^t_h\), which is also graphed in Figure 8.2 and listed in Table 8.2. The constant quality structures price index \(P^t_{SS}\) (which is a normalization of the series \(\hat{\gamma}^t, \ldots, \hat{\gamma}^{14}\)) is presented as well.

8.29 The overall house price index resulting from the spline model, \(P^t_h\), is fairly close to the Fisher hedonic imputation index \(P^t_{IM}\). However, the spline model does not generate sensible series for the price of land, \(P^t_{LA}\), and the price of structures, \(P^t_{SS}\); both series are extremely volatile but in opposite directions. As was the case with the previous cost of production model, the present model suffers from a multicollinearity problem.

\(^{(1)}\) This approach follows that of Dievend, de Haan and Hendriks (2010) (2011). The use of linear splines to model nonlinearity in the price of land as a function of lot size is due to Francke (2008).

©International Monetary Fund. Not for Redistribution
8.30 Comparing Figures 8.1 and 8.2, it can be seen that in Figure 8.1 the price index for land is above the overall price index for the most part and the price index for structures is below the overall index while in Figure 8.2, this pattern reverses. This instability is again an indication of multicollinearity. In the following section an attempt to cure this problem will be made by imposing monotonicity restrictions on the prices of the constant quality structures.

Figure 8.2. The Price of Land (P_{12}), the Price of Structures (P_{2}), the Overall Price Index Using Splines on Land (P_2) and the Fisher Hedonic Imputation Price Index

![Graph showing price indices](image)

Source: Authors’ calculations based on data from the Dutch Land Registry

Table 8.2. The Price of Land (P_{12}), the Price of Structures (P_{2}), the Overall Price Index Using Splines on Land (P_2) and the Fisher Hedonic Imputation Price Index

<table>
<thead>
<tr>
<th>Quarter</th>
<th>P_{12}</th>
<th>P_{2}</th>
<th>P_2</th>
<th>P_{hf}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.00000</td>
<td>1.00000</td>
<td>1.00000</td>
<td>1.00000</td>
</tr>
<tr>
<td>2</td>
<td>1.10534</td>
<td>0.99589</td>
<td>1.04137</td>
<td>1.04356</td>
</tr>
<tr>
<td>3</td>
<td>1.02008</td>
<td>1.09803</td>
<td>1.06465</td>
<td>1.06746</td>
</tr>
<tr>
<td>4</td>
<td>1.05082</td>
<td>1.02542</td>
<td>1.03608</td>
<td>1.03834</td>
</tr>
<tr>
<td>5</td>
<td>0.99379</td>
<td>1.08078</td>
<td>1.04294</td>
<td>1.04794</td>
</tr>
<tr>
<td>6</td>
<td>0.74826</td>
<td>1.31122</td>
<td>1.06982</td>
<td>1.07553</td>
</tr>
<tr>
<td>7</td>
<td>0.93484</td>
<td>1.20719</td>
<td>1.08912</td>
<td>1.09460</td>
</tr>
<tr>
<td>8</td>
<td>0.77202</td>
<td>1.26718</td>
<td>1.05345</td>
<td>1.06158</td>
</tr>
<tr>
<td>9</td>
<td>1.19966</td>
<td>1.01724</td>
<td>1.09425</td>
<td>1.10174</td>
</tr>
<tr>
<td>10</td>
<td>0.77139</td>
<td>1.34813</td>
<td>1.09472</td>
<td>1.10411</td>
</tr>
<tr>
<td>11</td>
<td>0.92119</td>
<td>1.24884</td>
<td>1.10596</td>
<td>1.11430</td>
</tr>
<tr>
<td>12</td>
<td>0.97695</td>
<td>1.19188</td>
<td>1.09731</td>
<td>1.10888</td>
</tr>
<tr>
<td>13</td>
<td>0.84055</td>
<td>1.27531</td>
<td>1.08811</td>
<td>1.09824</td>
</tr>
<tr>
<td>14</td>
<td>1.29261</td>
<td>0.97875</td>
<td>1.10613</td>
<td>1.11630</td>
</tr>
</tbody>
</table>

Source: Authors’ calculations based on data from the Dutch Land Registry
An Approach Based on Monotonicity Restrictions

8.31 It is likely that Dutch construction costs did not fall significantly during the sample period. (12) If this is indeed the case, monotonicity restrictions on the quarterly prices of quality adjusted structures, \(y', y^2, y^3, \ldots, y^n \), can be imposed on the hedonic regression model (8.10)-(8.12) by replacing the constant quality quarter \(t \) structures price parameters by the following sequence of parameters for the 14 quarters: \(y' + \phi^2 y^2 + \phi^3 y^3 + \phi^4 y^4 + \phi^n y^n \). These values are almost identical to the corresponding estimates in the previous unrestricted model. The first period parameter estimate for quality adjusted structures is \(g' = 980.5 \) (49.9) Euros/m², which is little changed from the previous unrestricted estimate of 978.1 Euros/m².

8.33 Once the parameters for the model have been estimated, convert the estimated \(\phi^t \) parameters into estimated parameters using the following recursive equations:

\[
\hat{y}^{t+1} = \hat{y}' + (\hat{\phi})^2
\]

Now use equations (8.13)-(8.19) in the previous section in order to construct a chained Fisher index of land prices, which is denoted by \(L_3 \). This index is plotted in Figure 8.3 and listed in Table 8.3. As in the previous two models, the estimated period \(t \) price for a square meter of quality adjusted structures is \(\hat{g}' \) and the corresponding quantity of constant quality structures is \(\hat{S}' = \sum_{t=1}^{n} (1 - \hat{\delta}' \hat{t}) \hat{S}' \). The price and quantity series \(\hat{y}' \) and \(\hat{S}' \) were combined with the three land price and quantity series to construct a chained overall Fisher house price index \(P_3 \) which is also graphed in Figure 8.3 and listed in Table 8.3. The constant quality structures price index \(\hat{S}' \) may be found in Figure 8.3 and Table 8.3 as well.

Figure 8.3. The Price of Land (\(P_{L3} \)), the Price of Quality Adjusted Structures (\(P_{S3} \)), the Overall House Price Index with Monotonicity Restrictions on Structures (\(P_3 \)) and the Overall House Price Index Using Splines on Land (\(P_2 \))
Decomposing an RPPI into Land and Structures Components

Table 8.3. The Price of Land \((P_{L3})\), the Price of Quality Adjusted Structures \((P_{S3})\), the Overall House Price Index with Monotonicity Restrictions on Structures \((P_3)\) and the Overall House Price Index Using Splines on Land \((P_2)\)

<table>
<thead>
<tr>
<th>Quarter</th>
<th>(P_{L3})</th>
<th>(P_{S3})</th>
<th>(P_3)</th>
<th>(P_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.00000</td>
<td>1.00000</td>
<td>1.00000</td>
<td>1.00000</td>
</tr>
<tr>
<td>2</td>
<td>1.10047</td>
<td>1.00000</td>
<td>1.04148</td>
<td>1.04137</td>
</tr>
<tr>
<td>3</td>
<td>1.07431</td>
<td>1.05849</td>
<td>1.06457</td>
<td>1.06465</td>
</tr>
<tr>
<td>4</td>
<td>1.00752</td>
<td>1.05849</td>
<td>1.03627</td>
<td>1.03608</td>
</tr>
<tr>
<td>5</td>
<td>0.99388</td>
<td>1.08078</td>
<td>1.04316</td>
<td>1.04294</td>
</tr>
<tr>
<td>6</td>
<td>0.89560</td>
<td>1.20300</td>
<td>1.07168</td>
<td>1.06982</td>
</tr>
<tr>
<td>7</td>
<td>0.93814</td>
<td>1.20300</td>
<td>1.08961</td>
<td>1.08912</td>
</tr>
<tr>
<td>8</td>
<td>0.85490</td>
<td>1.20300</td>
<td>1.05408</td>
<td>1.05345</td>
</tr>
<tr>
<td>9</td>
<td>0.95097</td>
<td>1.20300</td>
<td>1.09503</td>
<td>1.09425</td>
</tr>
<tr>
<td>10</td>
<td>0.94424</td>
<td>1.21031</td>
<td>1.09625</td>
<td>1.09472</td>
</tr>
<tr>
<td>11</td>
<td>0.96514</td>
<td>1.21031</td>
<td>1.10552</td>
<td>1.10596</td>
</tr>
<tr>
<td>12</td>
<td>0.94596</td>
<td>1.21031</td>
<td>1.09734</td>
<td>1.09731</td>
</tr>
<tr>
<td>13</td>
<td>0.92252</td>
<td>1.21031</td>
<td>1.08752</td>
<td>1.08811</td>
</tr>
<tr>
<td>14</td>
<td>0.96262</td>
<td>1.21031</td>
<td>1.10427</td>
<td>1.10613</td>
</tr>
</tbody>
</table>

Source: Authors’ calculations based on data from the Dutch Land Registry

8.34 The new overall house price index \(P_3\) that imposed monotonicity on the quality adjusted price of structures in Figure 8.3 can hardly be distinguished from the previous overall house price index \(P_2\), which was based on a similar hedonic regression model except that the movements in the price of structures were not restricted. The fluctuations in the price of land and quality adjusted structures are no longer violent.

8.35 While the above results seem “reasonable”, the early rapid rise in the price of structures and the slow growth in structures prices from quarter 6 to 14 are not very likely. In the following section, one more method for extracting separate structures and land components out of real estate sales data will therefore be tried.

An Approach Based on Exogenous Information on the Price of Structures

8.36 Many countries have new construction price indices available on a quarterly basis. This is the case for the Netherlands.\(^{(14)}\) If one is willing to make the assumption that construction costs for houses have the same rate of growth over the study period across all cities in the Netherlands, the information on construction costs can be used to eliminate the multicollinearity problem encountered in the previous sections.

8.37 Recall equations (8.10)-(8.12) above. These are the estimating equations for the unrestricted hedonic regression model based on costs of production. In the present section, the constant quality price parameters for the structures, the \(\gamma'\) for \(t = 2,...,14\) in (8.10)-(8.12), are replaced by the following numbers, which involve only the single unknown parameter \(\gamma'\):(8.20)

\[
\gamma' = \gamma' \mu'
\]

\[t = 2, ..., 14\]

where \(\mu'\) is the statistical agency’s construction cost price index for the location and the type of house under consideration, normalized to equal 1 in quarter 1. The new hedonic regression model is again defined by equations (8.10)-(8.12) except that the 14 unknown \(\gamma'\) parameters are now defined by (8.20), so that only \(\gamma'\) needs to be estimated. The number of parameters to be estimated in this new restricted model is 44 whereas the old number was 57.

8.38 Using the data for the town of “A”, the estimated decade depreciation rate was \(\hat{d} = 0.0043\) (0.00433). The \(R^2\) for this model was .8849, a small drop from the previous restricted spline model, where the \(R^2\) was .8859, and a larger drop from the unrestricted spline model \(R^2\) in section 8.5, which was .8875. The log likelihood was -10640.1.

\(\^{}(14)\) From the Statistics Netherlands (2010) online source, Statline, the following series was downloaded for the New Dwellings Output Price Index for the 14 quarters in our sample of house sales: 98.8, 98.1, 100.3, 102.7, 99.5, 100.5, 100.0, 100.3, 102.2, 102.2, 102.2, 105.6, 107.9, 110.0, 110.0. This series was normalized to 1 in the first quarter by dividing each entry by 98.8. The resulting series is denoted by \(\mu' = 1, \mu'_2, ..., \mu'_{14}\).

\(\^{}(15)\) The technique suggested here for decomposing property prices into land and structures components can be viewed as a variant of a technique used by Davis and Heathcote (2007) and Davis and Palumbo (2008).
Decomposing an RPPI into Land and Structures Components

The first period parameter estimates for the 3 marginal prices for land are now $\hat{\beta}_l = 215.4$ (30.0), $\hat{\beta}_w = 362.6$ (46.7) and $\hat{\beta}_s = 176.4$ (28.4). They differ slightly from the previous figures. The first period parameter estimate for the quality adjusted structures is $\hat{\gamma_s} = 1085.9$ (22.9) Euros/m², which is significantly higher than the unrestricted estimate of 980.5 Euros/m². So the imposition of a (nationwide) growth rate on the change in the price of quality adjusted structures has had some effect on the estimates for the levels of land and structures prices.

As usual, equations (8.13)-(8.19) were used in order to construct a chained Fisher index of land prices, which is denoted by P_{ls}. This index is plotted in Figure 8.4 and listed in Table 8.4. For the previous three models, the estimated price in quarter t for a square meter of quality adjusted structures is \hat{g}_t (which now equals $\hat{\gamma}_t \mu_t$) and the corresponding quantity is $S_t = \sum_{n=1}^{N_t} (1 - \hat{\alpha}_t)S_t$. These structures price and quantity series were again combined with the three land price and quantity series to form a chained overall Fisher house price index P_4, which is graphed in Figure 8.4 and listed in Table 8.4. The constant quality structures price index P_{s4} (a normalization of the series $\hat{\gamma}_t, ..., \hat{\gamma}_t$) is also presented.

A comparison of Figures 8.3 and 8.4 shows that the imposition of the national growth rates for new dwelling construction costs has changed the nature of the land and structures price indices: in Figure 8.3, the price series for land lies below the overall house price series for most of the sample period while in Figure 8.4, the pattern is reversed: the price series for land lies above the overall house price series for most of the sample period (and vice versa for the price of structures). But which model is best? Although the previous model can be preferred on statistical grounds because the log likelihood is somewhat higher, we would nevertheless prefer the present model that uses exogenous information on structures prices because it yields a more plausible pattern of price changes for land and structures.

Figure 8.4. The Price of Land (P_{ls}), the Price of Quality Adjusted Structures (P_{s4}) and the Overall House Price Index using Exogenous Information on the Price of Structures (P_4)

Source: Authors’ calculations based on data from the Dutch Land Registry
Table 8.4. The Price of Land \((P_{L4}) \), the Price of Quality Adjusted Structures \((P_{S4}) \) and the Overall House Price Index using Exogenous Information on the Price of Structures \((P_4) \)

<table>
<thead>
<tr>
<th>Quarter</th>
<th>(P_{L4})</th>
<th>(P_{S4})</th>
<th>(P_4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.00000</td>
<td>1.00000</td>
<td>1.00000</td>
</tr>
<tr>
<td>2</td>
<td>1.13864</td>
<td>0.99291</td>
<td>1.04373</td>
</tr>
<tr>
<td>3</td>
<td>1.16526</td>
<td>1.01518</td>
<td>1.06752</td>
</tr>
<tr>
<td>4</td>
<td>1.04214</td>
<td>1.03947</td>
<td>1.03889</td>
</tr>
<tr>
<td>5</td>
<td>1.11893</td>
<td>1.00709</td>
<td>1.04628</td>
</tr>
<tr>
<td>6</td>
<td>1.18183</td>
<td>1.01721</td>
<td>1.07541</td>
</tr>
<tr>
<td>7</td>
<td>1.23501</td>
<td>1.01215</td>
<td>1.09121</td>
</tr>
<tr>
<td>8</td>
<td>1.13257</td>
<td>1.01518</td>
<td>1.05601</td>
</tr>
<tr>
<td>9</td>
<td>1.21204</td>
<td>1.03441</td>
<td>1.09701</td>
</tr>
<tr>
<td>10</td>
<td>1.19545</td>
<td>1.04453</td>
<td>1.09727</td>
</tr>
<tr>
<td>11</td>
<td>1.17747</td>
<td>1.06883</td>
<td>1.10564</td>
</tr>
<tr>
<td>12</td>
<td>1.11588</td>
<td>1.09211</td>
<td>1.09815</td>
</tr>
<tr>
<td>13</td>
<td>1.05070</td>
<td>1.11336</td>
<td>1.08863</td>
</tr>
<tr>
<td>14</td>
<td>1.09648</td>
<td>1.11336</td>
<td>1.10486</td>
</tr>
</tbody>
</table>

Source: Authors’ calculations based on data from the Dutch Land Registry

Choosing the “Best” Overall Index

8.41 This section is concluded by listing and charting our four “best” overall indices: the chained stratified sample Fisher index \(P_{SC} \), constructed in Chapter 4, the chained hedonic imputation Fisher index \(P_{HP} \) studied in Chapter 5, the index \(P_3 \) that resulted from the cost based hedonic regression model with monotonicity restrictions constructed earlier, and the index \(P_4 \) that resulted from the cost based hedonic regression model using exogenous information on the price of structures studied in the present section. As can be seen from Figure 8.5, all four indices paint much the same picture. Note that \(P_3 \) and \(P_4 \) are virtually identical.

8.42 All things considered, the hedonic imputation index \(P_{HP} \) is our preferred index since it has fewer restrictions than the other indices and seems closest to a matched model index in spirit, followed by the two cost of production hedonic indices \(P_3 \) and \(P_4 \), followed by the stratified sample index \(P_{SC} \). The latter likely suffers from some unit value bias. Hedonic indices can be biased too (if important explanatory variables are omitted or if an “incorrect” functional form is chosen), but in general we would prefer hedonic regression methods over stratification methods. If separate land and structures indices are required, we are in favour of the cost based hedonic regression model that uses exogenous information on the price of structures.
Figure 8.5. House Price Indices Using Exogenous Information (P₄) and Using Monotonicity Restrictions (P₃), the Chained Fisher Hedonic Imputation Index and the Chained Fisher Stratified Sample Index

Table 8.5. House Price Indices Using Exogenous Information (P₄) and Using Monotonicity Restrictions (P₃), the Chained Fisher Hedonic Imputation Index and the Chained Fisher Stratified Sample Index

<table>
<thead>
<tr>
<th>Quarter</th>
<th>P₄</th>
<th>P₃</th>
<th>PHIF</th>
<th>PFCH</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.00000</td>
<td>1.00000</td>
<td>1.00000</td>
<td>1.00000</td>
</tr>
<tr>
<td>2</td>
<td>1.04373</td>
<td>1.04148</td>
<td>1.04356</td>
<td>1.02396</td>
</tr>
<tr>
<td>3</td>
<td>1.06752</td>
<td>1.06457</td>
<td>1.06746</td>
<td>1.07840</td>
</tr>
<tr>
<td>4</td>
<td>1.03889</td>
<td>1.03627</td>
<td>1.03834</td>
<td>1.04081</td>
</tr>
<tr>
<td>5</td>
<td>1.04628</td>
<td>1.04316</td>
<td>1.04794</td>
<td>1.04083</td>
</tr>
<tr>
<td>6</td>
<td>1.07541</td>
<td>1.07168</td>
<td>1.07553</td>
<td>1.05754</td>
</tr>
<tr>
<td>7</td>
<td>1.09121</td>
<td>1.08961</td>
<td>1.09460</td>
<td>1.07340</td>
</tr>
<tr>
<td>8</td>
<td>1.05601</td>
<td>1.05408</td>
<td>1.06158</td>
<td>1.06706</td>
</tr>
<tr>
<td>9</td>
<td>1.09701</td>
<td>1.09503</td>
<td>1.10174</td>
<td>1.08950</td>
</tr>
<tr>
<td>10</td>
<td>1.09727</td>
<td>1.09625</td>
<td>1.10411</td>
<td>1.11476</td>
</tr>
<tr>
<td>11</td>
<td>1.10564</td>
<td>1.10552</td>
<td>1.11400</td>
<td>1.12471</td>
</tr>
<tr>
<td>12</td>
<td>1.09815</td>
<td>1.09734</td>
<td>1.10888</td>
<td>1.10483</td>
</tr>
<tr>
<td>13</td>
<td>1.08863</td>
<td>1.08752</td>
<td>1.09824</td>
<td>1.10450</td>
</tr>
<tr>
<td>14</td>
<td>1.10486</td>
<td>1.10427</td>
<td>1.11630</td>
<td>1.11189</td>
</tr>
</tbody>
</table>

Source: Authors’ calculations based on data from the Dutch Land Registry.
Rolling Window Hedonic Regressions

8.43 A problem with the hedonic regression model discussed in the previous section (and all other hedonic models discussed in this Handbook except hedonic imputation models) was mentioned in Chapter 5: when more data are added, the indices generated by the model change. This feature of these regression based methods makes these models unsatisfactory for statistical agency use, where users expect the official numbers to remain unchanged as time passes. Users may tolerate a few revisions to recent data but typically, they would not like all the numbers to be revised back into the indefinite past as new data become available. A simple solution to this problem is available, however, the so-called rolling window approach. This approach will be outlined in more detail and applied to the cost based hedonic regression model that uses exogenous information on the price of structures.

8.44 First, one chooses a “suitable” number of time periods (equal to or greater than two) where it is thought that the hedonic model yields “reasonable” results; this will be the window length (say M periods) for the sequence of regression models which will be estimated. Secondly, an initial regression model is estimated and the appropriate indices are calculated using data pertaining to the first M periods in the data set. Next, a second regression model is estimated where the data consist of the initial data less the data for period 1 but adding the data for period M+1. Appropriate price indices are calculated for this new regression model but only the rate of increase of the index going from period M to M+1 is used to update the previous sequence of M index values. This procedure is continued with each successive regression dropping the data of the previous earliest period and adding the data for the next period, with one new update factor being added with each regression. If the window length is a year, then this procedure is called a rolling year hedonic regression model; for a general window length, it is called a rolling window hedonic regression model.(16)

8.45 Using the data for the town of “A”, the rolling window procedure was applied with a window length of 9 quarters. The hedonic regression model defined by equations (8.10)-(8.12) and (8.20) was initially estimated for the first 9 quarters. The resulting price indices for land and for constant quality structures and the overall index are denoted by \(P_{LWP4}\), \(P_{SP4}\) and \(P_{WLP}\) and are listed in the first 9 rows of Table 8.6.(17) Next, a regression covering quarters 2-10 was run and the resulting land, structures and overall price indices were used to update the initial indices; i.e., the price of land in quarter 10 of Table 8.6 is equal to the price of land in quarter 9 times the price relative for land (quarter 10 land index divided by the quarter 9 land index) obtained from the regression covering quarters 2-10, etc. Similar updating was done for the next 4 quarters using regressions covering quarters 3-11, 4-12, 5-13 and 6-14.

8.46 The rolling window indices can be compared to the corresponding indices based on the data pertaining to all 14 quarters constructed in the previous section by looking at Table 8.6. Recall that the estimated depreciation rate and the estimated quarter 1 price of quality adjusted structures for the last model were \(\delta = 0.1028\) and \(\gamma = 1085.9\), respectively. If by chance the 6 rolling window hedonic regressions generated the exact same estimates for \(\delta\) and \(\gamma\), then the indices resulting from the rolling window regressions would coincide with the indices \(P_{WLP4}\), \(P_{SP4}\) and \(P_{WLP}\). The estimates for \(\delta\) generated by the 6 rolling window regressions are 0.10124, 0.10805, 0.11601, 0.11103, 0.10857 and 0.10592. The estimates for \(\gamma\) generated by the 6 rolling window regressions are 1089.6, 1103.9, 1088.1, 1101.0, 1123.5 and 1100.9. While these estimates are not identical to the corresponding estimates of 0.1028 and 1085.9 for \(P_{WLP}\), they are fairly close. So we can expect the rolling window indices to be close to their counterparts for the last model in the previous section. The \(R^2\) values for the 6 rolling window regressions were .8803, .8813, .8825, .8852, .8811 and .8892.

8.47 The rolling window series for the price of quality adjusted structures, \(P_{WSP4}\), is not listed in Table 8.6 since it is identical to the series \(P_{SP4}\).(16) The rolling window price series for land, \(P_{LP4}\), is extremely close to its counterpart \(P_{WLP4}\), and the overall rolling window price series for detached dwellings in the town of “A”, \(P_{WSP}\), is also close to its counterpart \(P_{WLP}\). The corresponding series in Table 8.6 are so close to each other that we decided not to provide a chart.

(15) This procedure was recently used by Shimizu, Nishimura and Watanabe (2010) and Shimizu, Takatsuji, Oho and Nishimura (2010) in their hedonic regression models for Tokyo house prices. An analogous procedure has also been recently applied by Ivanic, Diewert and Fox (2011) and de Haan and van der Grient (2011) in their adaptation of the GEKS method for making international comparisons to the scanner data context.

(16) We imposed the restrictions (33) on the rolling window regressions and so the rolling window constant quality price index for structures, \(P_{SP4}\), is equal to the constant quality price index for structures listed in Table 8.4, \(P_{SP}\).

(17) By construction, \(P_{LP4}\) and \(P_{WLP4}\) are both equal to the official Statistics Netherlands construction price index for new dwellings, \(\mu_i/\mu_t\) for \(t=1,\ldots,14\).
8.48 Using the data for the town of “A”, rolling window hedonic regressions gave much the same results as a hedonic regression that covers the whole sample period. This supports our view that the rolling window approach can be used by statistical agencies to compile an RPPI based on hedonic regressions, including a decomposition into land and structures components.

The Construction of Price Indices for the Stock of Dwelling Units

8.49 This section shows how hedonic regression models can be used to form an approximate RPPI for the stock of dwelling units. We will first look at the hedonic imputation model discussed in Chapter 5 and compare the resulting index with an approximate stock based index using the stratification approach.

The Hedonic Imputation Model

8.50 Recall that the hedonic imputation model was defined by equations (5.25), where \(L_t, S_t \) and \(A_t \) denoted, respectively, the land area, structure area, and age (in decades) of property \(n \) sold in period \(t \). To form a price index for the stock of detached houses in the town of “A”, it would in principle be necessary to know \(L, S \) and \(A \) for all detached houses in “A” during some base period. This information is not available to us, but we can treat the total number of detached houses sold over the sample period as an approximation to the stock of this type. In our data set there were \(N(1) + N(2) + \ldots + N(14) = 2289 \) of such transactions.

8.51 The estimated parameters for land size, structure size and depreciation in quarter \(t \) are denoted by \(\hat{\beta}^L, \hat{\gamma} \) and \(\hat{\delta}^L \); \(\hat{\alpha}^L \) denotes the constant term. Our approximation to the total value of the housing stock for quarter \(t \), \(V^t \), is defined as

\[
V^t = \sum_{n=1}^{N(t)} \left[\hat{\alpha}^L + \hat{\beta}^L L_n + \hat{\gamma} (1 - \hat{\delta}^L A_n) S_n \right]
\]

That is, \(V^t \) is (approximately) by the imputed value of all houses traded during the 14 quarters in our sample, where the regression coefficients from the quarter \(t \) hedonic imputation model given by (5.25) serve as weights for the characteristics of each house. Dividing the \(V^t \) series by the value for quarter 1, \(V^1 \), is our first estimated stock price index, \(P_{\text{est}} \), for the town of “A”. This is a form of a Lowe index; see the CPI Manual (2004) for the properties.

<table>
<thead>
<tr>
<th>Quarter</th>
<th>(P_{\text{RWL}})</th>
<th>(P_{L_4})</th>
<th>(P_{\text{RW}})</th>
<th>(P_s)</th>
<th>(P_{S_4})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.00000</td>
<td>1.00000</td>
<td>1.00000</td>
<td>1.00000</td>
<td>1.00000</td>
</tr>
<tr>
<td>2</td>
<td>1.14073</td>
<td>1.13864</td>
<td>1.04381</td>
<td>1.04373</td>
<td>0.99291</td>
</tr>
<tr>
<td>3</td>
<td>1.16756</td>
<td>1.16526</td>
<td>1.06766</td>
<td>1.06752</td>
<td>1.01518</td>
</tr>
<tr>
<td>4</td>
<td>1.04280</td>
<td>1.04214</td>
<td>1.03909</td>
<td>1.03889</td>
<td>1.03947</td>
</tr>
<tr>
<td>5</td>
<td>1.12055</td>
<td>1.11893</td>
<td>1.04635</td>
<td>1.04628</td>
<td>1.00709</td>
</tr>
<tr>
<td>6</td>
<td>1.18392</td>
<td>1.18183</td>
<td>1.07542</td>
<td>1.07541</td>
<td>1.01721</td>
</tr>
<tr>
<td>7</td>
<td>1.23783</td>
<td>1.23501</td>
<td>1.09123</td>
<td>1.09121</td>
<td>1.01215</td>
</tr>
<tr>
<td>8</td>
<td>1.13408</td>
<td>1.13257</td>
<td>1.05602</td>
<td>1.05601</td>
<td>1.01518</td>
</tr>
<tr>
<td>9</td>
<td>1.21417</td>
<td>1.21204</td>
<td>1.09698</td>
<td>1.09701</td>
<td>1.03441</td>
</tr>
<tr>
<td>10</td>
<td>1.19772</td>
<td>1.19545</td>
<td>1.09738</td>
<td>1.09727</td>
<td>1.04453</td>
</tr>
<tr>
<td>11</td>
<td>1.18523</td>
<td>1.17747</td>
<td>1.10718</td>
<td>1.10564</td>
<td>1.06882</td>
</tr>
<tr>
<td>12</td>
<td>1.11889</td>
<td>1.11588</td>
<td>1.09779</td>
<td>1.09815</td>
<td>1.09201</td>
</tr>
<tr>
<td>13</td>
<td>1.05191</td>
<td>1.05070</td>
<td>1.08893</td>
<td>1.08863</td>
<td>1.11335</td>
</tr>
<tr>
<td>14</td>
<td>1.09605</td>
<td>1.09648</td>
<td>1.10436</td>
<td>1.10486</td>
<td>1.11335</td>
</tr>
</tbody>
</table>

Source: Authors’ calculations based on data from the Dutch Land Registry

(20) This approximation would probably be an adequate one if the sample period were a decade or so. Obviously, our sample period of 14 quarters is too short to be accurate and there are also sample selectivity problems, i.e., newer houses will be over represented. However, the method we are suggesting here can be illustrated using this rough approximation.

(21) We did not delete the observations for houses that were transacted multiple times over the 14 quarters since a particular house transacted during two or more of the quarters is not actually the same house due to depreciation and renovations.

(22) Since \(V^t \) is a value, it does not appear to be a price series at first glance. But in each quarter, the quantity vector which underlies this value is a vector of ones of dimension 2289, which is constant over the 14 quarters. Hence \(V^t \) can also be interpreted as a price series, which is normalized to equal one in quarter 1.
of Lowe indices. In Table 8.7 and Figure 8.6 this price index for the stock of houses is compared with the corresponding sales based Fisher hedonic imputation price index, \(P_{IF} \).

8.52 An additional approximate stock price index based on stratification, \(P_{Stock2} \), is also graphed in Figure 8.6 and listed in Table 8.7. This index uses the unit value prices for the nonempty cells in the stratification scheme in each quarter, as explained in Chapter 4, and uses the imputed prices based on the hedonic imputation regressions from Chapter 5 for the empty cells in each quarter. The quantity vector used for \(P_{Stock2} \) is the (sample) total quantity vector by cell, which makes \(P_{Stock2} \) an alternative Lowe price index. It can be seen that while \(P_{Stock2} \) and \(P_{IF} \) have the same general trend as \(P_{Stock1} \) and \(P_{IF} \), it differs substantially from these hedonic imputation indices during several quarters. These differences are due to the existence of some unit value bias in the stratification indices. Thus, although stratification indices can be constructed for the stock of dwelling units of a certain type and location (with the help of hedonic imputation for empty cells), it appears that the resulting stock indices will not be as accurate as indices that are entirely based on the use of hedonic regressions.\(^{(22)}\)

\(^{(22)}\) If the imputed prices are used for every one of the 45 cell prices for each period (instead of just for the zero transaction cells as was the case for the construction of \(P_{Stock2} \) and the same total sample quantity vector is used as the approximate stock quantity vector, then the resulting Lowe index turns out to be exactly equal to \(P_{IF} \). Thus these two different ways for constructing a stock index turn out to be equivalent. The fact that \(P_{IF} \) is not equal to \(P_{Stock2} \) is clear evidence that there is unit value bias in the cells of the stratification scheme: the cells are simply not defined narrowly enough.

Figure 8.6. Approximate Stock Price Indices and Based on Hedonic Imputation (\(P_{Stock1} \)) and Stratification (\(P_{Stock2} \)) and the Fisher Hedonic Imputation Sales Price Index

Source: Authors’ calculations based on data from the Dutch Land Registry
Table 8.7. Approximate Stock Price Indices and Based on Hedonic Imputation (P_{Stock1}) and Stratification (P_{Stock2}) and the Fisher Hedonic Imputation Sales Price Index

<table>
<thead>
<tr>
<th>Quarter</th>
<th>P_{Stock1}</th>
<th>P_{Stock2}</th>
<th>P_{PHIF}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.00000</td>
<td>1.00000</td>
<td>1.00000</td>
</tr>
<tr>
<td>2</td>
<td>1.04791</td>
<td>1.02712</td>
<td>1.04356</td>
</tr>
<tr>
<td>3</td>
<td>1.07255</td>
<td>1.07986</td>
<td>1.06746</td>
</tr>
<tr>
<td>4</td>
<td>1.04131</td>
<td>1.03257</td>
<td>1.03834</td>
</tr>
<tr>
<td>5</td>
<td>1.05040</td>
<td>1.05290</td>
<td>1.04794</td>
</tr>
<tr>
<td>6</td>
<td>1.07549</td>
<td>1.05934</td>
<td>1.07553</td>
</tr>
<tr>
<td>7</td>
<td>1.09594</td>
<td>1.07712</td>
<td>1.09460</td>
</tr>
<tr>
<td>8</td>
<td>1.06316</td>
<td>1.07172</td>
<td>1.06158</td>
</tr>
<tr>
<td>9</td>
<td>1.10137</td>
<td>1.08359</td>
<td>1.10174</td>
</tr>
<tr>
<td>10</td>
<td>1.10708</td>
<td>1.11482</td>
<td>1.10411</td>
</tr>
<tr>
<td>11</td>
<td>1.11289</td>
<td>1.12616</td>
<td>1.11430</td>
</tr>
<tr>
<td>12</td>
<td>1.10462</td>
<td>1.11291</td>
<td>1.10888</td>
</tr>
<tr>
<td>13</td>
<td>1.09278</td>
<td>1.10764</td>
<td>1.09824</td>
</tr>
<tr>
<td>14</td>
<td>1.11370</td>
<td>1.10686</td>
<td>1.11630</td>
</tr>
</tbody>
</table>

Source: Authors’ calculations based on data from the Dutch Land Registry

The Use of Exogenous Information on the Price of Structures

8.53 The same kind of construction of an approximate stock price index can be applied to the other hedonic regression models discussed in this chapter. Here we will show how this works for the cost based model that used exogenous information on the price of structures. This model was defined by equations (8.10)-(8.12) and (8.20). Recall that the sets of period t sales of small, medium and large lot houses were denoted by S_t, (t), S_t (t) and S_t (t), respectively; the total number of sales in period t was denoted by N(t) for t = 1,...,14. The estimated model parameters are \(\hat{\delta}_t \), \(\hat{\gamma}_t \) and \(\hat{\beta}_t \), \(\hat{\beta}_n^s \) and \(\hat{\beta}_t^m \) for t = 1,...,14. The estimated period t values of all small, medium and large lot houses traded over the 14 quarters, \(\tilde{L}_t \), \(\tilde{L}_t \) and \(\tilde{L}_t \), respectively, are defined by (8.22)-(8.24):

\[
V_t' = \sum_{i=1}^{14} \sum_{m=1}^{N(t)} \hat{\beta}_t^m L_t^i \quad \text{ (8.22)}
\]

\[
V_{tS} = \sum_{i=1}^{14} \sum_{m=1}^{N(t)} \{ \hat{\beta}_t^m [160] + \hat{\beta}_t^m [L_t^i - 160] \} \quad \text{ (8.23)}
\]

\[
V_{tM} = \sum_{i=1}^{14} \sum_{m=1}^{N(t)} \{ \hat{\beta}_t^m [160] + \hat{\beta}_t^m [140] + \hat{\beta}_t^m [L_t^i - 300] \} \quad \text{ (8.24)}
\]

The estimated period t value of quality adjusted structures, \(V_t' \), is defined by

\[
V_t' = \sum_{i=1}^{14} \sum_{m=1}^{N(t)} \hat{\beta}_t^m L_t^i \quad (8.25)
\]

where all structures traded during the 14 quarters are included.

8.54 The quantities that correspond to the above period t valuations of the three land stocks and the stock of structures are defined as follows: (3)

\[
Q_{tS} = \sum_{i=1}^{14} \sum_{m=1}^{N(t)} L_t^i \quad (8.26)
\]

\[
Q_{tM} = \sum_{i=1}^{14} \sum_{m=1}^{N(t)} L_t^i \quad (8.27)
\]

\[
Q_{tL} = \sum_{i=1}^{14} \sum_{m=1}^{N(t)} L_t^i \quad (8.28)
\]

\[
Q_t' = \sum_{i=1}^{14} \sum_{m=1}^{N(t)} (1 - \hat{\delta}_t^m) S_t^i \quad (8.29)
\]

(3) The quantities defined by (8.26)-(8.29), which are constant over the 14 quarters, are equal to 77455, 258550, 253590 and 238476 for small lots, medium size lots, large lots and structures, respectively.
8.55 Approximate stock prices, P_{lS}^t, P_{MS}^t, P_{LS}^t, and P_{S}^t, that correspond to the values and quantities defined by (8.22)-(8.29), can be computed in the usual way:

$$
\begin{align*}
P_{lS}^t &= V_{lS}' / Q_{lS}' \\
P_{MS}^t &= V_{MS}' / Q_{MS}' \\
P_{LS}^t &= V_{LS}' / Q_{LS}' \\
P_{S}^t &= V_{S}' / Q_{S}'
\end{align*}
$$

Using the above prices and quantities, an approximate stock index of land prices, $P_{Stock}^{t_{LS}}$, is formed by aggregating the three types of land and an approximate constant quality stock price index for structures, $P_{Stock}^{t_{S}}$, is simply formed by normalizing the series P_{S}^t. The approximate overall stock index, $P_{Stock}^{t_{overall}}$, is obtained by aggregating the three types of land with the constant quality structures (or, equivalently, by aggregating $P_{Stock}^{t_{LS}}$ and $P_{Stock}^{t_{S}}$). Since the quantities are constant over all 14 quarters, the Laspeyres, Paasche and Fisher price indices are all equal. The stock price indices $P_{Stock}^{t_{LS}}$, $P_{Stock}^{t_{S}}$ and $P_{Stock}^{t_{overall}}$ are charted in Figure 8.7 and listed in Table 8.8. For comparison purposes, the corresponding price indices based on sales of properties for the model presented previously, $P_{S}^{t_{L4}}$, $P_{S}^{t_{MS}}$ and $P_{S}^{t_{L4}}$, are also listed in Table 8.8. As can be seen from Table 8.8, the approximate stock price index for structures $P_{Stock}^{t_{S}}$ coincides with the sales based price index for constant quality structures $P_{S}^{t_{L4}}$, so $P_{S}^{t_{L4}}$ is not charted in Figure 8.7.

(24) Fixed base and chained Laspeyres, Paasche and Fisher indices are also equal under these circumstances.

Figure 8.7. Approximate Price Indices for the Stock of Houses ($P_{Stock}^{t_{LS}}$), the Stock of Land ($P_{Stock}^{t_{L}}$), the Stock of Structures ($P_{Stock}^{t_{S}}$) and the Corresponding Sales Indices ($P_{S}^{t_{L4}}$ and $P_{S}^{t_{L4}}$)

Source: Authors’ calculations based on data from the Dutch Land Registry
Table 8.8. Approximate Price Indices for the Stock of Houses (P_{stock}), the Stock of Land (P_{Lstock}), the Stock of Structures (P_{Sstock}) and the Corresponding Sales Indices (P_{L4} and P_{S4})

<table>
<thead>
<tr>
<th>Quarter</th>
<th>P_{stock}</th>
<th>P_{L4}</th>
<th>P_{Lstock}</th>
<th>P_{S4}</th>
<th>P_{Sstock}</th>
<th>P_{L4}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.00000</td>
<td>1.00000</td>
<td>1.00000</td>
<td>1.00000</td>
<td>1.00000</td>
<td>1.00000</td>
</tr>
<tr>
<td>2</td>
<td>1.04331</td>
<td>1.04373</td>
<td>1.13279</td>
<td>1.13864</td>
<td>0.99291</td>
<td>0.99291</td>
</tr>
<tr>
<td>3</td>
<td>1.06798</td>
<td>1.06752</td>
<td>1.16171</td>
<td>1.16526</td>
<td>1.01518</td>
<td>1.01518</td>
</tr>
<tr>
<td>4</td>
<td>1.04042</td>
<td>1.03889</td>
<td>1.04209</td>
<td>1.04214</td>
<td>1.03947</td>
<td>1.03947</td>
</tr>
<tr>
<td>5</td>
<td>1.04767</td>
<td>1.04628</td>
<td>1.11973</td>
<td>1.11893</td>
<td>1.00709</td>
<td>1.00709</td>
</tr>
<tr>
<td>6</td>
<td>1.07540</td>
<td>1.07541</td>
<td>1.17873</td>
<td>1.18183</td>
<td>1.01721</td>
<td>1.01721</td>
</tr>
<tr>
<td>7</td>
<td>1.09192</td>
<td>1.09121</td>
<td>1.23357</td>
<td>1.23501</td>
<td>1.01215</td>
<td>1.01215</td>
</tr>
<tr>
<td>8</td>
<td>1.05763</td>
<td>1.05601</td>
<td>1.13299</td>
<td>1.13257</td>
<td>1.01518</td>
<td>1.01518</td>
</tr>
<tr>
<td>9</td>
<td>1.09829</td>
<td>1.09701</td>
<td>1.21171</td>
<td>1.21204</td>
<td>1.03441</td>
<td>1.03441</td>
</tr>
<tr>
<td>10</td>
<td>1.10065</td>
<td>1.09727</td>
<td>1.20029</td>
<td>1.19545</td>
<td>1.04453</td>
<td>1.04453</td>
</tr>
<tr>
<td>11</td>
<td>1.10592</td>
<td>1.10564</td>
<td>1.17178</td>
<td>1.17747</td>
<td>1.06883</td>
<td>1.06883</td>
</tr>
<tr>
<td>12</td>
<td>1.10038</td>
<td>1.09815</td>
<td>1.11507</td>
<td>1.11588</td>
<td>1.09211</td>
<td>1.09211</td>
</tr>
<tr>
<td>13</td>
<td>1.08934</td>
<td>1.08863</td>
<td>1.04668</td>
<td>1.05070</td>
<td>1.11336</td>
<td>1.11336</td>
</tr>
<tr>
<td>14</td>
<td>1.10777</td>
<td>1.10486</td>
<td>1.09784</td>
<td>1.09648</td>
<td>1.11336</td>
<td>1.11336</td>
</tr>
</tbody>
</table>

Source: Authors' calculations based on data from the Dutch Land Registry

8.56 The overall approximate price index for the total stock of detached houses in the town of "A" (P_{stock}) can hardly be distinguished from the corresponding overall sales price index (P_{s}) in Figure 8.7. Similarly, the approximate price index for the stock of land in "A" (P_{Lstock}) can barely be distinguished in Figure 8.7 from the corresponding sales price index for land (P_{L}). Nevertheless, there are small differences between the stock and sales indices, as Table 8.8 shows.

8.57 Our conclusion is that the hedonic regression models for the sales of houses can readily be adapted to compute Lowe type price indices for the stock of houses. There do not appear to be major differences between the two index types when using our data set, but this result may not hold for other data sets.
Data Sources
Introduction

9.1 In practice, because of the high cost of undertaking purpose-designed surveys of house prices, the methods adopted by statistical agencies and others to construct residential property price indices have mainly made use of administrative data, the latter usually being a function of the house price data sets generated by a country’s legal and administrative processes associated with buying a house. The indices so constructed can vary according to the point in the house purchasing process at which the price is measured. For example, the final transaction price or the earlier valuation used for securing a loan could be used as the “price” of the property. Furthermore, different administrative data sets will generally collect information on different sets of characteristics associated with the sales of the properties. These differing information sets will generally affect index compilation methods, often acting as a constraint on the techniques available to quality adjust for houses of different sizes, locations, etc. Thus data sets have historically acted as a constraint on index construction.

9.2 This chapter examines the different sources of data used for constructing residential property prices indices. Although it focuses mainly on price data, the chapter also considers how the choice of weighting scheme can be constrained by the information generated from the house-purchasing process. Different weighting schemes, notably whether an index is stock or sales weighted, produce price indices which measure different concepts. In these circumstances it is important that there is a clear understanding of what the target measure is so that the indices compiled can be evaluated against the target measure to determine fitness-for-purpose.

Prices

The Process of Buying and Selling a House

9.3 The process of buying and selling a property normally takes place over a period of several months or more. The particular stage in this process at which the price is entered into an index will depend on the source of the data and this has consequences for what is being measured and for the comparability of different indices. Price data for a residential property price index may be taken at the following stages:

- As soon as the property is on the market (advertised or asking price). Typical data sources: newspapers, real estate agents.
- Mortgage applications. Typical data source: mortgage lenders.
- Mortgage approved. Typical data source: mortgage lenders.
- Signing of binding contract. Typical data source: lawyers, notaries.
- Transaction completed. Typical data sources: land registries, tax authorities.

9.4 Each source of price data has its advantages and disadvantages. For example, a disadvantage of advertised prices and prices on mortgage applications and approvals is that not all of the advertised prices will end in transactions, and the price may differ from the final negotiated transaction price. These prices are likely to be available sometime before the final transaction price. Indices that measure the price earlier in the purchase process are able to detect price changes first, but they will measure final prices with error because prices can be renegotiated extensively before the deal is finalized.

9.5 It should be noted that the availability of different sources of price information at different points in the buying and selling process can be an advantage. For instance, changes in the relationship between asking price and selling price may provide an early indication of a change in the housing market. The diagram below illustrates the situation in the UK; see also the case study for the UK in Chapter 10.

9.6 Most data sources are susceptible to all the disadvantages of using administrative systems for statistics. The use of administrative data in economic statistics has been associated with four challenges: definitions, coverage, quality, and timeliness – with expected trade-offs against compilation costs. Definitions and coverage are sometimes placed under the one heading of “coverage”: to embrace the types of units covered and the degree of coverage. For example, cash sales could be recorded but properties bought with a mortgage may not be covered or some cash sales may not be recorded if, for example, they are under the threshold for tax liability.

9.7 The underlying problem arises from the fact that the data are primarily recorded as a step in the administrative process and not as an input into a statistical system. The data are not under the control of the statistician. The inherent weaknesses in administrative data need to be taken into account when using the data and in interpreting the results, in particular when they are used as a substitute for statistical data rather than as a supplement to or in conjunction with purpose-designed statistics. Some of the weaknesses may be overcome by an appropriate methodology, such as combining complementary data sources, and possibly by using some form of modeling.
9.8 A number of basic characteristics come into play in considering the suitability of different data sources.

- **Definition.** This is closely associated with conceptual issues and what the target measure of an index is.
- **Coverage.** Issues relating to coverage will be determined by the operational boundaries of the agency or business providing the housing data. For example, the agency could cover country-wide property sales or just cover a particular region where the transactions covered could relate only to cash purchases or to properties purchased using a mortgage loan. For a government agency, the operational boundaries will be dictated by the regulations and legal processes involved with the purchase of residential property. Inevitably, for public and private data providers coverage will also be heavily dependent on the resources at the disposal of the agency or business and its efficiency in providing data. All these factors are outside the control of the index compiler and can impact on data quality and on any divergence between intended coverage of the residential property price index and actual coverage.
- **Quality.** When considering the issue of data quality, it should be borne in mind that the administrative authority is likely to focus on validating the information which is pertinent to the sale and to the execution of its duties and which reflect the laws and regulations which it is required to comply with. There may be other information which is collected which is of interest to the statistical agency, but which is only of limited relevance to the administrative authority. For instance, this may be the case for some house characteristics which the statistical agency may wish to use for quality adjustment. At the end of the day, the reliability of administrative data will depend on the incentive for data suppliers to give correct information and complete information. There can be mutual advantage to both parties from the statistical agency helping the administrative authority to improve the quality of its data. This can be done by giving feedback on the consistency of data entries and from advising on more general weaknesses. Some statistical agencies provide the administrative agency with an incentive to improve their data collection by compiling custom-designed statistics for the data supplier in return for access to the raw data.
- **Timeliness.** The timeliness of administrative data will depend on who is responsible for reporting to the
administrative authority and on the incentive for timely reporting. For instance, there may be a big incentive for a buyer to obtain approval from the mortgage company, for a house loan and for the mortgage company, to quickly get an accurate and up-to-date valuation so that the sale can go through, with all parties safeguarded, before another potential purchaser takes an interest in the property. On the other hand, there may be less of an incentive to register the sale quickly with the official land registry once completed.

One of the keys to the successful use of administrative data is to have an intimate and detailed knowledge of the data collection processes and associated operational systems.

9.9 Each source of price data is considered separately below. Where more than one data source is available to the index compiler, the opportunity arises for consistency checks and for data from different sources to be combined. For instance, it may be possible to use the property valuations carried out for the approval of loans to predict the final transaction price recorded much later on by the land registry. This depends of course on the stability of any correlation found between the two.

Seller’s Asking Price: Estate Agents, Newspapers, Etcetera

9.10 Information on the seller’s asking price can be collected through surveys of real estate agents or from an examination of advertisements in newspapers, magazines or online. One of the main advantages of indices constructed from such information is their timeliness. By taking asking prices, indices constructed using this information can provide a timelier estimate of house prices than those indices that are based on subsequent transactions. They also have an advantage over house price indices based on information from mortgage lenders, as the latter are limited to transactions involving mortgages. However, indices based on initial asking prices have a major drawback. Houses can be withdrawn from market and the agreed selling price may not equal the seller’s asking price. These indices ignore reductions in prices that sellers subsequently make, for example when the housing market is on a downturn, or offer prices above the asking price when the housing market is buoyant. Such indices can therefore present an over-optimistic outlook when the housing market becomes depressed and an over-pessimistic outlook when the housing market is recovering. The fact that they cannot be relied upon to present an accurate picture of the housing market in the short term devalues their usefulness to most users, most particularly those interested in the early detection of turning points in the housing market or an advanced indicator of the future direction of house prices. It should be noted that the differences between initial asking price compared to actual transaction price also imply that the calculation of “average house price estimates” can sometimes be misleading.

9.11 Information collected on a seller’s asking price cannot always be easily verified and, as well as depending on a balanced and representative sample, relies on the honesty and knowledge of those being surveyed and when drawn from advertisements, the accuracy of the information, especially when it is from a website. For example, it has been argued that real estate agents are more likely to be optimistic about prices and have a vested interest in prices going up rather than down and that this may influence survey results. On the other hand, an estate agent might suggest to a seller an unrealistically low asking price in order to get the property off their books quickly to get the commission. It has also been argued that websites will tend to be biased towards properties that have a competitive asking price to entice potential sellers. All this is, of course, speculation but it does bring home some of the potential difficulties associated with these sources.

9.12 Surveys of real estate agents have some inherent advantages over surveys of advertisements. Agency surveys can be based on a more scientifically selected sample and can provide information on a representative selection of those properties on the market, including those which are not covered in advertisements. Data from real estate agents might include extensive information on the characteristics of the property and this information is extremely important for quality adjustment (using either hedonic regression methods or stratification methods as was seen in previous chapters). Also the survey questionnaire could collect information on issues such as: what is the average selling time or what has been the recent difference between asking prices and selling prices (e.g. “higher” or “lower”) or on the number of potential buyers registering and the number of properties listed with the agent. This information can help put the price information used in compiling the index into context and can be useful for interpretation of the final results. But such surveys typically do not record the asking price of a specific property. Rather, the questionnaire would normally ask the real estate agent to give the “average asking price” for a selection of representative properties. (1) For example, this might be for each of four standard property types (flat, terraced, semi-detached and detached) in a number of different locations. It is this information which is used to create an average property price for each property type in each location, which is used in turn to compile the corresponding price index. In contrast, the inherent advantage of a survey of advertisements is that the latter will collect the actual asking price for each of the advertised properties.

(1) Some surveys also ask for ‘achievable’ price and use this to construct a house price index.
9.13 In summary, although a house price index based on surveys of asking prices may be more timely, the difficulties in determining exactly how the survey information was compiled and the uncertain relationship between asking price and selling price mean that care should taken if such an index is to be used as a barometer of house prices.

The Initial Offer Price Accepted by Seller: Mortgage Companies

9.14 Many countries turn to mortgage lenders as the main data source for their house price index. The information is stored in the lender’s computer system and serves the operational business needs of the mortgage lenders. This database may include the initial offer price made by the potential purchaser, the valuation price used for authorising a loan and sometimes also the final transaction price. Information from mortgage companies can suffer from all the disadvantages of using data drawn from administrative systems, as described above, but these databases can be a rich source of timely information.

9.15 However, data from mortgage lenders suffer from a major drawback: they exclude non-financed home purchases. Research has indicated that cash buyers account for about a third of the UK market and cash buyers tend to purchase either very cheap or very expensive properties. This would not be problematic if it was not for the fact that dwellings purchased for cash can experience different price developments compared to those financed by a mortgage. This is likely to be particularly the case at turning points in the market where different ends of the housing market may react differently to the economic circumstances and the premium for a cash-buyer increase. For instance in a down-turn, people at the top end of the market who were considering selling their homes to release equity may hold back from putting their homes on the market at a reduced price, so the supply of houses for sale falls and is mainly from owners who, for one reason or another, are very keen to sell. However, at the same time the number of active potential mortgage-based buyers could drop significantly as people are reluctant to take out larger mortgages. But some people will need to sell. In this situation a cash-buyer for a house at the upper end of the market will be in a relatively stronger position to negotiate a bargain price than in a more stable market.

The Valuation Price for a Loan: Mortgage Companies

9.16 Mortgage companies will obtain an independent valuation of a property before approving a loan. The valuation that the mortgage company provides the customer with at the time of the mortgage approval can be some weeks after the buyer and seller have negotiated a final price and the buyer has made the initial application for a loan. In practice there is a negotiation process between these two stages in which it is possible for the agreed purchase price of the dwelling to change. This can be the case when the independent valuation differs from the price the purchaser and buyer had agreed upon or where the purchaser has paid for a detailed survey of the property which reveals that substantial repairs are necessary. For instance, it is fairly common for a buyer to try to leverage a price reduction if the valuation by the mortgage company turns out to be significantly lower than the previously agreed price, or if a survey of the condition of the property reveals the need for new roofing. Clearly, the difference between the initial offer price and the follow-up valuation and any process of re-negotiation which takes place subsequently can result in the measured rate of house price inflation to differ from the true rate as measured by the actual transaction price.

9.17 The house price change measured by indices based on valuations by mortgage companies(2) can differ from the price change shown by the offer price and both may differ from the price change based on final transaction prices even when taken from the same sample of mortgage lenders. Thus, it is important to understand exactly what an index is measuring.

The Final Transaction Price: Mortgage Companies

9.18 The time lag between the mortgage application, mortgage approval and purchase completion stages and the differences in the corresponding values of the house prices illustrate the trade-off between timeliness and accuracy. The final transaction price is not always recorded by mortgage lenders and is often extracted instead from legal records such as entries made in land registers, which additionally also include sales that did not require a mortgage. But there can be a long time lag between the completion of the transaction and the recording of the sale in the land register. One of the main advantages of data from mortgage lenders is its timeliness. Initial offer prices and valuations provide an earlier indication of current prices, as these data are available earlier, and final transaction prices may be available sooner from the mortgage lender than from the land registry. It is for this reason that the exploitation of information from mortgage lenders on final transaction price may be a preferred option. The final transaction price held by mortgage lenders can be easily verified against land registry records to alleviate any concerns regarding accuracy and credibility.

Data Sources

(2) It has to be taken into account that prices from mortgage valuations, like prices based on any valuation, depend on the objectivity of the evaluation process. Thus, it has been mentioned that the mortgage valuations can sometimes be influenced by the credit policy of the bank, indicating potential difficulties associated with these sources.
The Final Transaction Price: Administrative Data from Property Registers and Tax Offices

9.19 Ideally a house price index would be based on actual transaction prices at the time when the property is sold and the sale completed. The signing of the first binding contract best fits this requirement because of its timeliness but in practice there can be some ambiguity about the point at which a contract is binding, e.g. whether this is at the point where an offer is formally accepted (e.g. when sealed bids are opened), or when a contract is signed or when the contract is exchanged. Similarly, there can be a difference between when a contract is signed and when the transfer of ownership takes place and when it is recorded in the property registers or at the tax office.

9.20 In theory, information from property registers or tax offices will cover all properties, including cash purchases as well as purchases via a mortgage and thus these databases should be the most comprehensive of all the sources available to the index compiler. But, in practice, comprehensiveness cannot be guaranteed, particularly if there is a disincentive for the owner to register a property. For example, when the primary purpose of registration is for taxation purposes, properties may not get registered at all, or may be registered with some relevant detail such as square metres of floor space missing or incorrectly recorded, in order to avoid tax or reduce the tax charges. (1)

Valuation Price for Taxation and Payment for Local Services: Tax Offices

9.21 In many countries, the central or a local government may impose a monthly or annual tax or service charge on residential properties, for funding the provision of public services such as road maintenance, police and fire services or refuse collection. In many cases, the tax bill faced by an individual is proportional to the assessed value of property and the latter is usually based on a valuation undertaken by professional chartered surveyors either under contract or directly employed by the taxation authority. The valuations should take into account characteristics of the property, such as location and size of plot. However, they rely on accurate information about the properties and also on the chartered surveyors’ assessments, which are difficult to verify. Also the updating of the valuations tends to be infrequent due to the field costs involved. Because of these drawbacks, the information collected can sometimes be of limited use in the construction of residential property price indices.

(1) There is a related problem: the transaction price may not be a market price because the transaction, while genuine, is between relatives or friends. For example, parents may decide to pass on the family home to their children at a below market price.

Other Expert Opinion Information: Surveys of Estate Agents Organisations, other Professional Bodies and their Members

9.22 In some countries, regular surveys are conducted of real estate agents, chartered surveyors or their corresponding professional bodies, asking about house prices and housing stock. These “opinion” surveys are typically restricted to asking respondents to give a view on whether house prices are moving up, down or flat. These surveys do not give an indication of how much houses are worth or by how much prices are falling or rising but they can provide an up-to-date and broad-based picture on the direction of price change in the housing market to supplement and help to add credibility to the latest figures from a residential property price index. For instance, a significant change in the difference in the proportions of real estate agents who think prices are going up and those who think prices are going down might provide an early indication of a change in the housing market not yet detected by the currently available statistics on mortgage lender valuations. Contextual information of this kind adds value and is regularly used by commentators when interpreting official house price indices.

Evaluation of Data Sources for Fitness-for-Purpose

9.23 The overall usefulness of the above sources of information on residential property prices will very much depend on their fitness-for-purpose for the particular applications to which they are being used. To gauge fitness-for-purpose requires an evaluation of the intrinsic advantages and disadvantages of the index against an agreed set of criteria, i.e. an evaluation against user needs.

9.24 Chapter 2 reviewed the many different uses of house price indices: as a macro-economic indicator of inflation; for monetary policy targeting; as a measurement of change in wealth; as a financial stability indicator to measure risk exposure; as a deflator for the national accounts; as an input into an individual citizen’s decision making on whether to invest in residential property; as an input into other price indices, in particular the Consumer Price Index (CPI), and for use in wage bargaining or indexation.
9.25 An effective evaluation of the different sources of data on house prices is dependent on a systematic analysis of user requirements. User needs have a significant impact on decisions relating to the conceptual basis of an index and the associated statistical requirement. This may take the form of a series of questions reflecting the different reasons why users may want information on house prices. For instance, whether an index of house prices is to be used as one of a suite of general macroeconomic indicators, as an input into the measurement of consumer price inflation, as an element in the calculation of household wealth or as a direct input into an analysis of lenders’ exposure. Such an analysis can then be transformed into a statistical user requirement and an associated conceptual framework by expressing the needs in statistical terms and identifying the common linkages and corresponding relationships at a micro and macro level. The different data sources can then be evaluated against the statistical need.

9.26 The following list of desirable properties for a residential property price index constitute a possible set of criteria for an evaluation of alternative data sources for fitness-for-purpose for different uses. (5) The list builds upon the discussion at the beginning of this chapter. The relative importance of each of the criteria will depend on use and in essence constitutes a statistical requirement. There will also be the usual trade-offs between fully meeting user needs and the costs of data collection.

Definitions and Measurement Concept

9.27 This also covers coherence with other statistical outputs. It represents the user requirement at the most basic level. Consider the needs of governments and analysts looking at inflationary pressures and those with a direct investment in real estate. The primary focus of these users may be the cyclical nature of prices and the ability of real estate prices to lead to destabilising booms and slumps in the economy as a whole. For this purpose, users will be looking to a variety of indicators, including indices of the volume and price of real estate transactions, as well as macro-economic indicators for modelling the economic cycle and predicting peaks and troughs. Analysts looking at the inflationary pressures of real estate price rises in comparison to other price rises may be interested in including in a CPI the inflationary costs of owner-occupier housing costs by means of a house price index based on the net acquisition cost basis but excluding land.

9.28 For users wanting a general macro-economic indicator, an index based on all purchases – both cash and those with a mortgage – is appropriate. Taking transaction prices solely from data supplied by mortgage lenders represents a serious deficiency. Conceptually, land registry data would represent a better source as it should cover all transactions. The challenge is to find a source of price data which readily fits, or can be manipulated to meet, the requirements of users interested in the inclusion of owner-occupier housing costs in a CPI on a net acquisition cost basis, that is, excluding the price of land. (6)

9.29 In contrast, users interested in an analysis of the current value of the real estate portfolio against which outstanding mortgages are secured, will require an index of changes in the price of the properties for which mortgages were issued, weighted by the amounts loaned for each type of property at the time at which they were issued. For both of these measures, the value of the land underlying the buildings is as important as the value of the buildings themselves and it is the total value of the land and buildings which is of interest. For these users, data from mortgage providers on property prices and the size of new mortgages and outstanding debt will fit the purpose.

9.30 Now consider the needs of employers and trade unions when negotiating wage settlements. Their primary focus will be the effects of price changes on the standard of living of workers. For this purpose users will be looking to a CPI that includes the cost of keeping a roof over their heads – for owner-occupiers the cost of mortgage interest payments and the repairs costs. The measurement of this will require the calculation of the mortgage outlay at time of purchase and the subsequent repayment history will need a sales weighted house price index. In an ideal world re-financing would be excluded. The repairs element may be measured by the calculation of depreciation. For this, a stock-weighted smoothed house price index is most appropriate. In addition, there is the issue of land where it is often argued that in most circumstances land is an investment which appreciates and that its inclusion in a depreciation calculation is inappropriate. (7) Thus an index excluding the price of land may be required.

9.31 For the calculation of mortgage outlay, the user can again rely on information supplied by mortgage lenders, but not for the estimation of depreciation, where the value of land may again need to be separately identified.

9.32 As a final example, consider the needs of national accountants, who are seeking appropriate deflators for national accounts. Their needs again will be different. Real estate appears in the National Accounts in several ways (for details, see Chapter 3):

(5) See also Chapter 3 where a listing of user needs is presented based on discussions between users of house price indices and the Office for National Statistics. In that section it was pointed out that there is a trade-off between the desire of users to have a family of more detailed indices (stratified by location and type of housing) and the quality of the indices; more detail inevitably leads to less accurate indices.

(6) In most countries for most transactions, land and building are purchased together as a ‘single package’, so the two components are typically separated in the information generated by records relating to the transfer of ownership. As such separating the prices would require a supplementary exercise. In Chapter 8 it was outlined how hedonic regression can be used to decompose the overall price index into land and structures components.

(7) There are other more general issues, which are not addressed here, to do with the measurement of depreciation and its inclusion in a consumer price index.
• The imputed rental value received by owner occupiers for buildings is part of household final consumption.
• The capital formation in buildings, as opposed to land, is part of gross fixed capital formation, depreciation, and the measurement of the stock of fixed capital.
• Land values, which are an important part element of the national stock of wealth.

In each case the derivation of volumes from values requires price indices for respectively: the imputed rent of owner occupied dwelling units weighted by the stock of different types of owner occupied housing; new house purchases weighted by the transactions in new houses but excluding the land component; and of the whole housing stock including land weighted by the housing stock

9.33 It can be seen that user needs will vary and that in some instances more than one measure of house price or real estate inflation may be required. It can also be seen that coherence between different measure and with other economic statistics is important and that achieving this will be especially difficult as statisticians are unlikely to have an ideal set of price indicators available to them.

Coverage

9.34 Coverage includes not just whether all properties are covered irrespective of whether the property is owned outright or being funded by a mortgage but also whether country-wide property sales or valuations are covered or just those in a particular region and whether all price ranges are covered. It can be noted that even where the primary need is for a national index, regional indices can be in demand for analytical purposes. House price information from any individual mortgage lender is unlikely to be representative of the country as a whole, not only because of the exclusion of cash purchases but also because lenders often focus their business on particular regions.

Quality

9.35 Quality relates to the accuracy and completeness of the information, i.e. there are no serious errors and the information is what it purports to be. Compared with other administrative data, house price information from a land registry is likely to score relatively highly in terms of accuracy due to the legal requirements to record property transactions and exchanges of ownership. However, the reliability of data from any administrative source is difficult to validate.

Timeliness

9.36 Indices that measure prices earlier in the purchasing process are able sooner to detect price changes and turning points in house price inflation. This is likely to be particularly important when used, say, for macro-economic policy and monetary targeting but less important for a national accounts deflator. Data from mortgage lenders may better suit the needs of those engaged in macro-economic policy and monetary targeting, even though cash purchases are excluded, whilst land registry data may better suit the needs of, for example, those calculating deflators.

Detail for Quality Adjustment and Mix-Adjustment

9.37 This relates to two (related) issues: the degree to which residential property price indices are able to adjust for changes in the mix of properties sold and to eliminate the effect of quality changes of the individual dwellings. For this purpose, “real time” information is needed on price determining attributes such as size of plot, size of house, type of property (flat, house, semi-detached or detached), location, the condition of the property, whether it has central heating, a fully-fitted kitchen and bathroom, etc. Quality (or mix) adjustment is essential in order to construct an accurate price index for housing components. It is unlikely that any of the sources of prices data listed above will be ideal for all purposes. The amount of detailed and relevant characteristics data will depend on the individual data set.

Frequency

9.38 Frequency essentially relates to how frequently an index can be computed, e.g. once a month or once a quarter. There is a tradeoff between frequency and accuracy. For a particular geographic area and type of housing, current information on the price of houses in a given strata will come from sales of old and new houses in that strata during the chosen time period. If the frequency is chosen to be a month as opposed to a quarter, the monthly sample size will only be approximately one third of the quarterly sample size. Thus a monthly house price index based on sales of properties in the given strata will be subject to increased sample volatility (and hence will not be as accurate) as compared to the corresponding quarterly index. Volatility of a monthly index may be reduced by making the strata “bigger”, i.e., different neighbourhoods could be combined within the same general location but this leads to another tradeoff between fineness.

Notes:

(1) The various methods available for constructing quality adjusted house price indices were discussed in Chapters 4-8
(2) In cases where the real estate agents’ data base includes the final selling price of the listed properties along with the main characteristics of the properties, this information base is probably the “best” for most purposes. However, the sample of listed properties needs to be compared with the properties listed in land registry offices to ensure that the coverage of listed properties is adequate for the purpose at hand. When constructing price indices for the stock of housing, it will be necessary to have census information on housing stocks along with post census information on demolitions and the construction of new dwelling units.
(3) It is not certain that combining strata will reduce index volatility if house prices in the different micro strata have different trends.
of the strata (which many users may want) and accuracy of the index (which all users want).

9.39 It may be possible to provide smoothed monthly house price indices that are say a three month moving average of the raw monthly indices (10) or the statistical agency could provide both monthly and quarterly indices and let users choose their preferred index. (11) It is not possible to provide definitive advice on how frequent a house price index covering a certain stratum should be published. The issue of frequency must be decided by the national statistical agency, taking into account user needs and data availability.

Revisions

9.40 Revisions can refer to either revisions resulting from subsequent returns (so that the series itself is revised) or from other sources of more relevant data subsequently coming on stream (so an early indicative measure is eventually replaced by a precise measure of what needs to be measured). (12) For instance, an example of the former might be revisions arising from late registration of property sales. An example of the latter might be where an initial offer price recorded on the mortgage application form is used as an early indication of movements in transaction prices but is subsequently discarded when land registry data on actual transaction prices (which takes into account any price renegotiation before the sale is finalised) eventually comes on stream at a much later point.

9.41 The extent to which figures are revised due to the receipt of subsequent returns is partly determined by the reference point of the prices data and partly by the point in time when the particular data set is received by the statistical agency: the earlier is the data reference period in the purchasing cycle and the earlier the particular data set is received, the more the index will be subject to revision. Thus, although information from the registration of property sales is appropriately referenced and provides a definitive source of information on property prices, the time delay that can sometimes take place in some countries for the legal registration of property transfers can mean that the register is not final until, say, twelve months the sale of the property.

9.42 Valuation prices kept by tax offices for taxation and payment for local services and the final transaction price recorded by mortgage companies are least likely to be subject to revision, whilst the final transaction price based on administrative data held on property registers and tax offices could be subject to revision over a long period depending on the time-lags involved in the legal processes of recording changes in ownership.

Comparability

9.43 Comparability refers to the degree of inter-country comparability between house price indices. This is important because comparing house prices from non-harmonised national data can be problematic as differences in concept, index construction, market coverage, quality adjustment procedures, etc. can make cross country comparisons difficult. Differences in frequency, timeliness and revisions policy can also cause comparability problems.

9.44 Problems can arise at both the national and international levels:

- Users in individual countries can be confronted either with a lack of relevant statistics or with different statistics for different time periods and with varying time-lags and these statistics can be based on different data sources or compilation methods.

- For users seeking international comparisons the situation is complicated by significant differences among countries with regards to the availability of data and the challenge this represents for compiling like-for-like comparisons and interpreting relative trends among countries. The complication of aggregate price indices covering groups of countries—a requirement for co-ordinated economic policy and monitoring across an economic area such as the Eurozone (13)—is a further challenge.

From Chapter 10 it can be seen that the methods employed for the compilation of residential property price indicators vary considerably between countries, and even between alternative sources within individual countries.

Weights

9.45 The data sources drawn on for the weights in a residential property price index are a function both of the data needs of the target index and of the availability of the required information. Also the data needs depend not only on the conceptual basis of the index but also on detailed aspects of index construction, such as the method of quality adjustment and any subindices that are required

(7) The Australian Bureau of Statistics makes frequent use of this technique for a wide range of its statistics. If the window length is 12 months, then the resulting smoothed index can be regarded as a seasonally adjusted index, centered in the middle of the 12 month period under consideration. For a variant of this smoothing technique, see Chapter 4.

(1) There is a possibility that some users may be confused by having more than one index covering essentially the same housing strata. However, the Bureau of Labor Statistics now has two monthly published Consumer Price Indices: their headline Lowe type CPI which is not revised and a second index which is an approximation to a superlative Törnqvist index (which is revised). Users in the U.S. seem to have accepted multiple indices in this context.

(7) A related issue is that some of the methods for constructing an RPI, such as the multiperiod time dummy hedonic method (see Chapter 5) and the repeat sales method (Chapter 6) suffer from revision in the sense that previously computed figures will change when new data is added to the sample. In some cases, revised indices are published while in other cases, rolling window technique with updating due to Shimizu, Nishimura and Watanabe (2010) and Shimizu, Takahasi, Oho and Nishimura (2010) is used. The rolling window with updating technique does not revise the historical index up to the current period.

(13) Consisting of the seventeen member states of the European Union that have adopted the Euro as of 2012.

©International Monetary Fund. Not for Redistribution
for analytical and other purposes. For instance, the construction of a mix adjusted property price index based on transactions requires that enough information is known about the sales in each period for them to be classified into groups sufficiently homogenous so that the unit values can be treated as prices. In the housing market, the problems are compounded by the low volumes of sales for certain house types in particular geographical areas which could lead to many cells being empty. (14)

9.46 Putting these detailed issues of construction to one side, the conceptual basis of the index is the main factor determining the data needs relating to weights. One price index cannot meet the diverse needs of users. For estimating gross capital formation, for instance, only new houses should be included while estimating the effect of price changes on capital stocks requires the index to cover all transactions.

9.47 The weights can be derived from a number of sources, in particular, from national accounts data, periodic national censuses which collect information on the housing stock, information from banks on the loans taken out for house purchase, construction statistics, official registers recording ownership, etc. There can be a lack of coherence between these different data sources resulting from the long and quite often involved processes associated with buying and selling a house and the fact that a valuation or offer price associated with an application for a mortgage will not necessarily lead to a sale and change of ownership. Other issues arise also, such as the distinction between what is being built for selling and what is being constructed. There can also be a significant element of owner-construction or rental. For many developing countries, a significant proportion of the housing stock consists of newly constructed buildings on family owned land or of old buildings which have been significantly upgraded since they were first constructed. There can also be a significant element of owner-constructed housing. Construction may take many years and at any point in time a substantial proportion of the houses could be considered incomplete. The use of formal mortgage finance is often very limited but informal finance may be used. House construction can vary from shanties built on compacted soil with salvaged materials to substantial multi-room dwellings built on concrete foundations with concrete blocks. Amenity levels can vary from virtually none to the elaborate. Housing mobility, particularly with owner-constructed dwellings, is usually very low and consequently the markets for rental or sale of owner-constructed houses are limited and there is very little movement between the two. In principle the compilation of a house price index is the same for owner-constructed housing as for third party constructed housing, but the measurement problems are, at the least, different and are generally more difficult. (15)

9.49 The above complications mean that formal records will rarely be kept of the cost of building the new dwelling or of upgrading an old house, for example, by incorporating running water, an internal WC or additional rooms. Formal transfers of ownership sometimes do not take place, formal valuations are often not available and methods of financing can be informal through the family or may simply not be recorded or records not kept centrally. Thus in these circumstances it will not be possible to calculate mortgage interest payments (including or excluding notional interest payments to relatives), or to estimate net acquisition costs.

9.50 The lack of such basic information often means that the rental equivalence or an imputed rent approach is the only practical option for constructing a housing price index. The price indicator for imputed rents can be derived either from a readily available price series for rents, re-weighted to reflect the current composition of the stock of owner-occupier housing, which can then be applied to the rental equivalents in the base period, or from asking an expert to provide on a monthly basis the equivalent rents for a sample of houses which is representative of the owner-occupier housing stock.

9.51 In each case, stratification by type of dwelling (house or flat), location (region or area, urban or rural), plus other characteristics which will influence rent is important so that the rents data can be combined to reflect the composition of owner-occupied property. Other stratification variables may include such things as the total size of the plot, floor area and number of rooms, whether there is mains water, an internal WC and mains electricity, the material used in construction and whether the building is of traditional design. The price statistician should seek the advice of an expert active in the field of renting domestic property, such as a housing corporation.

(14) The stratification or mix adjustment method was discussed in Chapter 4. In the example for the Dutch town of "A", many cells were indeed empty. A "matched-model" approach was suggested to cope with this problem.

(15) In particular, the important price determining characteristics of the structure can be quite different for a developing country than for a developed country. In a developed country, there is perhaps less variation in the type of construction and the materials used whereas the quality of shanties could differ more markedly. Also the market for renting may be missing in many instances in developing countries which again can cause problems for mix adjustment and hedonic regression techniques for adjusting housing quality.
to ascertain the most important rent-determining characteristics and should bear in mind the need to keep these to a manageable number. Weights information can be derived from the latest Housing Census or Census of Population and Housing. In practice this information may not be up-to-date due to the change in the owner-occupied housing stock which can occur in the time period between censuses. Where this is the case special surveys may need to be conducted or, particularly in urban areas including townships, use made of planning applications to update the latest census.

9.52 But the measurement problems can be significant. In summary, traditional or informal dwellings are generally built by family members or other unpaid labour. The walls can be made of less durable materials such as dried clay, bamboo or latticework and the roofs can be made from reeds, straw or palm fronds or corrugated iron. The dwellings may or may not have electricity or piped water in the dwelling, let alone other facilities. Traditional dwellings are generally located in rural areas. Some associated complications when attempting to include the owner-occupier housing costs in a consumer prices index are:

- Many such dwellings are located in or very near to large cities, such as shanty-towns. These dwellings may be rented or owner-occupied and it may be difficult to obtain details of ownership. Conducting surveys can be problematic.
- There are many such dwellings in rural areas that may be built with family labour on family or unregistered land or land in “common” ownership.

In these circumstances, the concept of “ownership” becomes a grey area. Thus the definition of owner-occupied housing and what a family actually own is subject to debate and even when there is an agreed upon definition, even basic records of the number of such owner-occupied housing may not exist let alone details of the dwellings.

9.53 Relevant characteristics for the computation of a price index, that are encountered in traditional and other dwellings in the informal market include:

- Electricity supply. This will often be electricity supplied by a generating or distribution company. However, electricity may also be generated by the household itself, e.g. from a diesel generator or wind power, or may be taken illegally from the distributor.
- Running water. This may be piped into the dwelling itself or the dwelling takes water from a communal standpipe or well.
- A private or communal toilet, which may be either a water-flushing WC-type or a chemical toilet.

In addition there is, as with any home the issue of living space, recorded in terms of number of rooms, m², or both. For this there need to be relevant definitions. In particular, definitions of usable floor space (the floor area of the living room, kitchen, hall, bathroom and all adjoining rooms minus the wall thickness and door and window recesses and excluding e.g. stairs) and of the number of rooms (e.g. to whether to include or exclude hall-ways) are required.

9.54 Finally, even if information on the characteristics of these dwellings is available there may not be an “equivalent” rental unit to value the services of an owner-occupied unit. Thus the indirect measurement of prices may not be possible. In this situation, statisticians can put a system in place to measure input prices (construction costs) and then use this information to construct a user cost measure of the housing services as a proxy for the prices of the housing services consumed. (*) For own-account consumption, the System of National Accounts 1993 (SNA 1993) recognises that it may only be practicable to measure input prices.

The issues discussed above are considered in the case study on the compilation of residential property price indices in South Africa, which can be found in Chapter 10.

(*) See Blades (2009) for additional material on constructing these user costs for traditional housing in developing countries.
This page intentionally left blank
Methods Currently Used
Introduction

10.1 In practice, the methods used for constructing residential property price indices can be constrained in large part by the nature of the data available. The data required to construct the target index, once defined, are not always available on a regular and timely basis, if at all. Moreover, even where suitable data are available to construct a price index to meet the needs of one set of users, more often than not, the data does not fit the requirements of another set of users. For many countries setting up the required infrastructure and procedures for the collection of the data necessary for producing a property price index can sometimes be prohibitively costly. Also, changes in methodologies and in the underlying data sources can frustrate the construction of historical series, which are often required for econometric modelling and analyses over more than one cycle of housing market developments to inform policy options for the management of the economy. Last but not least, the timeliness and frequency of the data, when available, may not be suitable for producing the kind of house price index that the users want or need.

10.2 For users, this data shortcoming for the construction of house price indices and related indicators has sometimes been a source of frustration. For example, the then Governor of the Bank of Canada in a speech to the Conference of European Statisticians (Dodge, 2003) stated: “Given that the investment in housing represents a big chunk of household spending, and that for most people their homes represent their most valuable asset, it is surprising that in many countries there are no comprehensive, quality-adjusted data on housing prices or rents”.

10.3 In addition, the data sources and the methods are not always well documented, and surveys of meta-data on residential property prices confirm that there is a lack of harmonisation in the practices. This represents a further challenge for users. In particular, it compromises the possibility of making meaningful international comparisons of trends in house prices and makes any comparative economic analysis extremely difficult. This can bring into question the credibility of the results.

10.4 Data availability apart, the methods used by countries to compile residential property price indices have also to confront some inherent problems, most particularly, that properties have unique characteristics, resulting in heterogeneity in different dimensions, many of which are difficult to measure objectively, and that transactions of individual properties are infrequent. Both of these issues make the compilation of price indices especially challenging. In addition, the fact that asking prices are negotiable means that the transaction price may differ from the initial or final asking price, the offer price and an expert valuation.

10.5 The identification of the techniques most widely used in compiling indices of residential property prices also begs the question of whether international best practice in the methods for constructing such indices can be identified, or whether the techniques adopted inevitably are governed and dependent on local conditions.

10.6 Other sections of this handbook provide recommendations on best practice. This chapter describes the range of available indices by different countries and also presents some case studies. It relies on meta-data gathered by various organisations, including the Bank for International Settlements and the European Central Bank and more recently a fact-finding exercise conducted by Eurostat in connection with the inclusion of owner occupied housing costs in the European Union’s Harmonised Index of Consumer Prices, which was extended to cover some non-EU countries. Meta-data on residential property price indices published by different countries are available from the website of the Bank for International Settlements (BIS); see www.bis.org/statistics.

Index Availability

10.7 At a European level, Eurostat has started releasing since December 2010 quarterly reports on experimental house price indices in the EU and euro area. These reports contain, for those EU statistical offices that have given their permission for publication, experimental data on house price indices. The annexes to these quarterly reports contain all currently available links to National Statistical Institutes web pages dealing with house price indices, where details concerning the compilation are given.

10.8 It can be seen from the available meta-data on the BIS website that the methods used to compile residential property price indices vary considerably, both among countries and even within individual countries. The latter raises a key question for users with regard to which series should be used to meet their particular needs. With regards to the former, a key issue is raised for users about the validity of available international comparisons.

10.9 The differences between the available house price indices cover almost every aspect of price index construction. These have been referred to in earlier chapters: the conceptual basis of index (i.e., what is the appropriate target index to suite each user need); data sources (property registrations, tax records, mortgage applications and

(1) The property price statistics on the BIS website include data from thirty-seven countries and are available at different frequencies. The data differ significantly from country to country, for instance in terms of sources of information on prices, type of property, area covered, property vintage, priced unit, detailed compilation methods and seasonal adjustment. This reflects two facts: First, that the processes associated with buying and selling a property, and hence the data available, vary between countries and, second, that there are currently no specific international standards for property price statistics.

(3) See http://bis.org/statistics/pp.htm
Responsibility for Compilation

10.11 In the EU, statistical offices have been cooperating in developing and compiling residential property price indices that are based on broadly harmonised statistical approaches, thereby pioneering the work towards internationally comparable house price indices. Also, several national central banks compile house price indicators, including Belgium, Germany, Greece, Italy, Cyprus, Luxembourg, Hungary, Malta, Austria, Poland and Slovakia. In Austria, the national central bank works jointly with the Vienna University of Technology, while the price index compiled by the Central Bank of Luxembourg is based on the data from the country’s national statistical institute. In Ireland, France, Spain, the UK and the USA, residential property price indices are compiled by government departments other than the statistical office. In some instances, such as in the UK, this reflects in part the fact that the statistical system is decentralised with government statisticians located in government departments and working alongside their policy and service-delivery colleagues. In some cases, responsibility for the compilation of the index resides with the department which has policy, operational or legal responsibility for the housing sector. The latter is the case with the Federal Housing Finance Agency in the USA, for example, and in the UK. The government department with policy or operational or legal responsibilities for the sector is often in a better position to gain access to administrative information for statistical purposes and should also be well-informed about the sector and may even have access to additional useful background information.

Data Sources

10.12 In Canada, the USA and several European countries (1), data on residential property prices are collected by the national statistical institutes or ministries. The source of official residential property price indices in Denmark, Finland, Lithuania, the Netherlands, Norway, Hong Kong, Slovenia, Sweden and the UK is data gathered for registration or taxation purposes. In Germany, the Federal Statistical Office collects prices from the local expert committees for property valuation. The statistical institutes in Spain and France calculate price indices from information provided by notaries. In Belgium, Germany, Greece, France, Italy, Portugal and Slovakia, real estate agencies and associations, research institutes or property consultants are the sources of price data. Data from newspapers or websites are collected for the compilation of residential property price indices in, e.g., Malta, Hungary (“Origo”) and Austria (“Austria Immobilienbörse”). The limited number of cases of integration of different data sources to add value and produce a better index is interesting given the number of countries that report multiple sources of information on property prices. In Germany, Ireland and the UK, residential property price data are, inter alia, provided by mortgage lenders. The price index compiled by the UK’s Department for Communities and Local Government is based on a mortgage survey conducted by the Council of Mortgage Lenders; the long time-lag associated with the registration of property ownership transfers undermines the use of the latter as a timely indicator. In Germany, the Association of German Pfandbrief banks uses the data of its member banks for compiling a residential property price index.

10.13 Comparability between indices can be very limited as a result of the different data sources listed above – mortgage versus cash purchases; urban versus rural prices; the prices of old properties versus new properties; valuations versus advertised prices versus initial offer prices versus final transaction prices. The net result is that published indices can in practice measure very different aspects of the price development in the housing markets. The deployment of different data sources and compilation practices, and the use to which the index is put (i.e., the index

(1) See for example Chiodo, Hernandez-Murillo and Oryang (2010).

(1) Regarding the data sources in EU countries, see also Eiglsperger (2010).
Index Methodology

10.14 The inherent difficulties with price measurement and the varying data sources used, lead to an array of different methodological approaches being adopted in the construction of house price indices.

Quality (Mix) Adjustment

10.15 Quality adjustment, to control for compositional changes (mix-adjustment) and for changes in the quality of the individual properties, is an essential part of index methodology. It ensures that price comparisons are on a “like with like” basis and avoids the possibility of bias in the series when, for instance, the quality of the housing stock is improving as a result of, amongst other reasons, renovations to the dwelling, which can take various forms, such as the modernisation of kitchens and bathrooms, the introduction of improved insulation and central heating or air conditioning systems. Quality adjustment techniques also play an important role in the compilation of house price indices because houses that come onto market will change from period to period.

10.16 Quality adjustment is applied in a number of different ways. For instance, a residential property price index for Estonia is derived from unit values, i.e., the average transaction price per square metre of floor space (in this particular case, the sum of the value of all real estate transactions divided by the sum of the square metres of floor space of all real estate sales, with outliers excluded). But unit value indices based on price per square meter of structure floor space, whilst adjusting for the size of the dwellings in each period, does not adjust for differences in the quality of construction or the age of the structure and perhaps more importantly, does not adjust for changes in the mix of plot sizes in the sample of properties sold in any particular period. Other changes to the features of the house can potentially occur which, together with general trends in the housing market, are reflected in compositional changes to the sample such as location, physical and environmental amenities, the general quality of housing, etc.

10.17 The main alternative of mix-adjustment (discussed in Chapter 4) utilises a classification of dwellings by what are generally recognised as important price determining characteristics to calculate individual price indices for each cell in the classification matrix. The overall index is then calculated as the weighted average of these sub-indices. Mix-adjustment is in essence a form of stratification. This method is adopted by, e.g., the Australian Bureau of Statistics to control for compositional change to compile quarterly house price indices for each of the eight capital cities. Their approach stratifies houses according to two characteristics: the long-term level of prices for the suburb in which the house is located, and the neighbourhood characteristics of the suburb, as represented by the ABS Socio-Economic Indexes for Areas (SEIFA) (4). In practice, the number of characteristics included in the classification is often limited by the number of observations that can regularly be found for each cell, i.e., by the ability to populate the “price-determining characteristics database” from the available data sources as well as by the availability of information on price-determining characteristics.

10.18 The most sophisticated form of quality adjustment used by countries is the hedonic regression approach (discussed in Chapter 5) which uses a regression model to isolate the value of each of the chosen characteristics and control for changes in the characteristics of the properties sold. But this method is usually more data intensive. It is sometimes used in conjunction with stratification (by type of structure and location). The use of hedonics in the compilation of residential property price indices is, in large part, a fairly recent innovation. Countries which publish indices that have been compiled using hedonic regression include Austria, Germany, Ireland, Finland, France, Norway and the UK. The hedonic model used in the compilation of the Norwegian house price index includes only a few explanatory variables and does not adjust for housing standards and for the age of the building; (5) the index adjusts only for size and location of the dwelling. The index is likely to be biased (unless the age of the structure and type of dwelling sold is stable over time). This shortcoming is acknowledged by Statistics Norway.

10.19 An additional method used in, for example, the USA and Canada, is the repeat sales method (described in Chapter 6); i.e., the Case-Shiller home price index in the USA and the Teranet-National Bank House Price Index™ in Canada. This approach matches pairs of sales of the same dwellings over time. It requires a huge database of transactions and is not used by any of the European index compilers.

10.20 It is interesting to note that one of the residential property price indices for Germany is based on data that is limited to “good quality” dwellings, which might imply that the issue of quality adjustment is by-passed. In practice, there could be a built-in measurement problem, since it is unlikely that the market definition of “good quality” is independent of the general increase in housing standards over time. For this reason there is potential for bias in the resulting index in the longer term. This is in addition to any concerns about sampling and, in particular, the

(4) See http://www.abs.gov.au/websitesections/abs@nslomarketing/collectnorm.nsf?
(5) As was seen in previous chapters using the data for the town of “A”, the age of the structure is an important price determining characteristic.
capability of “good quality” housing to be able to represent the price trend of all houses.

10.21 It can be seen from the above paragraphs that two crucial questions for all quality adjustment procedures are: (1) whether the chosen characteristics used for quality adjustment are the main determinants of price differences, and (2) whether the application of different techniques to the same data set will produce the same results (i.e., the issue of statistical robustness). In reality, while some of the price-determining characteristics – such as the size of the living area – are easy to measure, other important factors such as location (8) and the quality of construction, can be inherently difficult to capture and measure. Also, it should be noted that the application of different quality adjustment techniques to the same data set will not necessarily produce the same results. (9)

The Value of Meta-Data

10.22 A number of organisations have websites providing meta-data on the residential property price indices published by different countries. Most particularly, the Bank for International Settlements provides such information (see the earlier reference). This is in addition to any information provided by individual countries on, for instance, the websites of the national statistical institute or central bank.

10.23 As well as providing the user with guidance on the strengths and weaknesses of a particular price index and its appropriate use, a systematic and more detailed analysis of the meta-data on the currently available statistics and data sources can help to identify:

• major gaps in data provision;
• options for filling these gaps cost effectively from readily available sources;
• data coherence issues;
• the scope for further data integration and the need for new data sources.

10.24 Such an analysis of the basic meta-data also provides evidence of the compromises made in relying on readily available data and where one all-purpose house price index is used for a multitude of purposes. For example, the main official house price index published in the UK by the Department for Communities and Local Government (DCLG) uses sales weights and is appropriate for inclusion in, for example, a Consumer Price Index used for indexation of benefits but does not fully suit the needs of users who want to calculate “wealth”, where stock rather than expenditure weights are most appropriate. The latter may be addressed either by a re-weighting of the official index or by reference to one of the many indices published by lenders. However, the latter suffer from limited coverage. Thus re-weighting of the official index may provide a cost effective solution to filling this particular data gap.

10.25 A more detailed gap analysis may point to solutions involving synthetic estimates, based on the integration of data from different sources. For example, it can be noted in the context of the UK that the DCLG house price index referred to above has the advantages of being timely and not subject to revision but has the drawback that it excludes cash purchases.

10.26 A systematic approach to the construction of indices of residential property prices in the UK might conclude that it is possible to supplement the official index with information on cash purchases from the Land Registry. Although the latter is less up to date due to the time-lag in registering transactions in the official registry, time series modelling may be able to address this misalignment. The Land Registry constructs a repeat sales index by tracking the average growth in house prices using multiple transactions associated with the same home in an attempt to hold quality constant.

In the next section a series of case studies are presented relating to the residential property price indices published in a selection of countries.

Case Studies

Case Study: Canada

10.27 In Canada there are four house price indices that are currently available. These are Statistics Canada’s New House Price Index, the Teranet-National Bank Composite House Price Index™, the Canadian Real Estate Association’s measure of average house prices, and the Royal LePage Survey of Canadian House Prices. Each one will be explained in turn.

The New House Price Index

10.28 The New Housing Price Index (NHPI) is a monthly price index that measures changes over time in the builders’ selling prices of new residential houses. Prices that are collected are from a survey of builders from various areas of the country. It is a constant quality price index inasmuch that the features and characteristics of the units in the sample are identical between successive months; in other words, the NHPI is a matched-model index.
estimates provided by the builder about the current value (evaluated at market price) of the lots are also an important part of the survey. Consequently, given this information, Statistics Canada also publishes an independent price index series for land excluding the structure. The residual value (total selling price less land value), provides an indicator of the trend in the cost of the structure and is also published as an independent series. At the present time, the three variants of the NHPI are published for 21 metropolitan areas in Canada.

10.29 Housing market analysts, academics, and the public use the NHPI as a timely indicator of past and current housing market conditions. The NHPI is also used as an input in the compilation of other economic statistics. For instance, it is used for estimating certain shelter components of the Consumer Price Index. Moreover, the Canadian System of National Accounts uses the NHPI in estimating the constant price value of new residential construction. Due to the level of geographic detail provided and the sensitivity to changes in supply and demand, the NHPI series are of particular interest to the real estate industry for providing a proxy estimate of changes in the value of resale houses sold. The information provided by the NHPI is also of interest to building contractors, market analysts interested in housing policy, suppliers and manufacturers of building products, insurance companies, federal government agencies such as Canada Mortgage and Housing Corporation (CMHC), and provincial and municipal organizations that are responsible for housing and social policy.

10.30 The prices collected are asking prices by the builders and exclude the Goods and Services Tax and other tax related rebates. Missing prices as a result for example of the absence of a sale by a builder in a particular month, are imputed using the best estimate the builder can provide as if a house was to be sold. Not all types of housing are included in the NHPI. Condominiums are excluded from the sample, while single-family detached units as well as row (terrace) and detached houses are included. Given that builders do not report the price of building lots uniformly, the land price indices may be less accurate and precise than the overall NHPI. The same caveat applies to the derived residual values that are used for constructing the price indices for the structure only. Large builders as well as smaller independent builders are represented in the sample used for the NHPI.

10.31 From its conceptual basis, the Canadian NHPI measures changes in the price of new houses only, so it is not representative of resale houses in Canada (or for most new houses built in the core of the cities surveyed). The houses surveyed for the index are generally found in new tracts in suburbs of the survey cities where the price of land is significantly lower than in the city core areas. The movements over time in land prices in suburbs are generally different than the movements in the well established areas of Canadian cities. While the construction price index part of the NHPI is likely to be accurate (the cost related to building the house structure is approximately the same regardless of the area), the land component probably understates residential land price inflation for the existing housing stock by a significant amount in recent years.

Teranet–National Bank Composite House Price Index™ (11)

10.32 The Teranet-National Bank House Price Index™ (TNBHPI) is an independent estimate of the rate of change of home prices in six metropolitan areas, namely Ottawa, Toronto, Calgary, Vancouver, Montreal and Halifax. The price indices for the six metropolitan areas are then aggregated into a composite national index. The indices are estimated on a monthly basis using transaction prices for condominiums, row/town houses, and single-family detached homes within the six metropolitan areas.

10.33 The TNBHPI uses the repeat sales methodology. Estimating the indices is therefore based on the premise that houses that are traded more than once in the sample periods are of a constant quality. The TNBHPI attempts to adjust for quality changes of the individual housing units by minimizing or eliminating the influence of any changes in the physical characteristics (e.g., renovations, additions, etc.). Insofar as (net) depreciation of the properties that are resold is neglected, the index is likely to exhibit a small downward bias. (12) Properties that are affected by

(10) ©Teranet and National Bank of Canada, all rights reserved.
(11) Properties that are affected by more or less in between its two competitor indices that cover the resale market, but the latter indices also do not make adjustments for net depreciation. Some housing economists argue that the repeat sales method may have an upward bias due to a sample selectivity problem; it may be that dwelling units that are sold more frequently than the average unit are being more intensively renovated and upgraded and hence the quality of a repeat sales unit has actually increased between the two sale dates (rather than decreased due to depreciation).

(12) See Figure 10.1 for a comparison of the NHPI with other indices for Canada. This figure provides support for the likely downward bias of the land component of the NHPI.
endogenous factors are excluded from the calculation of the repeat sales index. These factors may include: non-arms-length sale; change of type of property (for example after renovations); data error, and high turnover frequency (biannual or higher).

The MLS® Average Resale House Price Indicator

10.34 The Canadian Real Estate Association (CREA) tracks, on a monthly basis, the number and prices of properties sold via the Multiple Listing Service® (MLS®) systems of real estate boards in Canada. The statistics are available by paid subscription to those who want to use them. Although the coverage of the indicator is limited to only houses that are sold through the MLS®, the system is quite active with about 70% of all marketed residential properties using it. The data are available for over 25 urban markets defined by CREA, as well for the provinces and two territories; a national aggregate is also published.

10.35 The indicators are simple arithmetic averages of all sales prices in the market of interest, regardless of housing type. In addition, no consideration is given to the issue of compositional shifts in the sample over time or for disparities in quality in the sample of units. So a change in the price indicator could reflect many factors other than the true price development. These factors range from quality differences that exist in the sample from period to period to the influence of outliers with extremely high or low prices due to special circumstances. In their monthly reports, CREA staff have recently published a weighted version of the national index (available back to 2006 only), with weights corresponding to the share of owned dwelling units by major markets derived from the 2006 Census. However, the price for each major market is still calculated as a simple average, and no attempt is made to track the potentially different trends among various housing types. The one major advantage of the MLS® price indices over other indicators is their timeliness, since data are typically released two weeks after the reference month.

Bank of Canada - Royal LePage Survey of Canadian House Prices

10.36 Prices in the Royal LePage survey reflect the opinions of Royal LePage with regards to the “fair market value” for seven types of properties in a large number of geographical areas. The information obtained is based on local data and market knowledge provided by Royal LePage brokers. The geographical coverage is broad, just like the MLS data, and the classification of housing is more refined. For example, the survey includes prices on four types of singles or detached houses (detached bungalow, executive detached two-storey, standard two-storey, senior executive), two types of condominium apartment units (standard and luxury), and a townhouse. Royal LePage standardizes each type in terms of the square footage, the number of bedrooms, the number of bathrooms, the type of garage, lot characteristics, the status of the basement, and other criteria. In addition, the properties in the survey are considered to lie within average commuting distance to the city centre and are typical of other housing in the neighbourhood. As long as the broker filling in the survey sticks to these guidelines, this is one way of ensuring some degree of constant quality. A comparative disadvantage of the Royal LePage price data is its long publication lag.

10.37 This survey is a basis for one of the house price indicators used by the Bank of Canada for monitoring developments in housing markets in Canada (13). Despite the wealth of price information on many other types of houses in the Royal LePage survey, the indicator developed at the Bank relates only to a subset of singles that were regarded as representative of the market when it was created in 1988. (14) For Canada and 11 local markets, the Bank’s price indicator is calculated as a weighted sum of the price of detached bungalow (weight of 0.75) and the price of executive detached two-storey (weight of 0.25). The price of each type of housing is in turn a weighted sum of sub-regions, with weights set to be the sub-regional share of units sold as of a fixed date in the late 1980s. The “units” data were obtained from MLS®.

A Comparative Analysis

10.38 A comparative analysis of the four types of property price indices available in Canada is given in Figure 10.1. The period of analysis covers February 1999 to March 2010. All four series show an upward trend in residential property prices over this period. However, the growth rates differ among the four series. The NHPI recorded the smallest increase at 55% over the entire period. By contrast, the MLS® showed an increase of 122%, more than double that of the NHPI. The Teranet-National Bank House Price Index™ and the Bank of Canada- Royal LePage indicator increased by 100% and 92% respectively.

(14) The Bank of Canada indicator is limited to detached bungalows and executive detached two storey houses.
Methods Currently Used

Figure 10.1. Four Residential Property Price Indices for Canada (February 1999 = 100)

10.39 The higher growth rate of the MLS® price indicator may be explained, at least partly, by the average price methodology which is used for its calculation. As is well known, this approach does not control for period-to-period compositional shifts and this can result in a higher rate of increase in the index if there is a shift towards the upper end of the market in the houses being sold. The NHPI’s slower rate of increase is probably explained by the fact that the index, although it controls for house type over time, does not control for location. New houses are constructed farther and farther away from the city centre where markets behave differently compared to properties sold in or near the city core.

10.40 All four indices show the drop in house prices that occurred during the economic downturn which began late in 2008. But the MLS® index starts falling slightly sooner than the three others and its drop is deeper. Compared to the other three indices, the fall in the NHPI starts slightly later and is not as acute. All four indices start to show an upswing early in 2009 but the MLS® index starts to turn earlier while the turning point from the NHPI index occurs last.\(^{(15)}\) In terms of volatility, the MLS® is the more volatile around its trend due to the compositional shifts in the sample of houses sold each month. The other three indices, which to some extent adjust for quality changes, show less erratic behaviour over time.

Case study: Germany

10.41 Quarterly residential property price index series for Germany are available from 2000. Prior to that date the situation in Germany could be characterised as an

\(^{(15)}\) For an illustration of the impact on turning points of the different methodologies, see Shimizu, Nishimura and Watanabe (2010).
uncoordinated set of different indicators provided by several private institutes. “These indicators mostly lacked a clear methodological foundation and had a restricted coverage. Moreover they gave – to some extent – contradictory signals.”

10.42 The Federal Statistical Office of Germany (Destatis) took action to improve the situation building on available data sources. Germany had well-established construction price statistics and statistics on purchasing values of building land. In addition, at the local level, the nationwide institution of Expert Committees for Property Valuation, regulated by federal law, provided access to comprehensive databases which contained transaction prices of building land and dwellings and the corresponding property characteristics. The main barrier to the exploitation centrally of the available data had been the differences in the collection systems across the federal states and among the individual local committees. The methods followed by Germany provide an interesting example of data integration i.e. the drawing on multiple data sources.

Residential Property Price Indices

10.43 Different data sources and compilation methods are used to construct price indices for different market segments. These are then combined to compute a residential property price index covering all types of properties and sub-indices relating to existing and new dwellings respectively. The weights used in the compilation of a price index for existing dwellings are the transaction expenditures in the base-year broken down into houses and flats and by the federal state. For turn-key dwellings, the weights are derived from official building activity statistics and for self-builds construction weights are used. Indices are published within 90 days of the end of the reporting.

Newly built turnkey-ready dwellings and existing dwellings

10.44 Data is taken from the information gathered by the local Expert Committees for Property Valuation. This data, that is collected at the time a contract is concluded, covers all sales (cash and mortgage) and consists of actual transaction price (both cash and mortgage) and a number of price-determining property characteristics – type of dwelling (single-family house, two-family house, freehold flat); type of house (free-standing, terraced, semi-detached); type of construction (conventionally built, prefabricated); year of construction; size of plot of land; size of living area; furnishing/luxury elements (kitchen, sauna/swimming-pool, attic storey); car parking facilities; characteristics of location (state, district, municipality; general rating of location: simple/medium/good); number of rooms/floors. In addition, a land valuation is provided.

10.45 A combination of hedonic techniques and stratification (one stratum for single-family/two-family houses and one for flats in apartment blocks) is used to adjust for the effects of quality changes in the type of properties being sold. The hedonic regression method that has been adopted is the “double imputation” approach, which was described in Chapter 5, where prices are estimated both for the base period and for the comparison period. Outliers are excluded.

Newly-built single family residential properties

10.46 The compilation of a price index for this particular type of newly-built properties draws on information from official country-wide construction price indices. Construction price indices are available for various types of structure (e.g., residential/non-residential buildings, roads, road bridges) as well as for maintenance work. Prices are collected quarterly for about 190 construction operations (including materials). In total, about 30 000 prices are reported by about 5 000 enterprises at every collection date. The prices refer to the transaction prices relating to contracts concluded in the quarter, excluding value added tax (VAT), i.e., profits and changes in productivity are taken into account. For self-builds, the construction price index for “conventionally built single-family residential buildings” is used. A matched model approach is followed for the construction of the index.

Prefabricated dwellings

10.47 The price index uses official producer price statistics for industrial products, in particular the price index for prefabricated single-family houses without a basement with a specific set of characteristics. Again a matched
model approach is adopted for the computation of the index. A specific feature of prefabricated dwellings is that the contracts usually provide for the purchase/sale of complete houses (e.g., single-family house without cellar), the characteristics of which do not change significantly over the short-term.

Building land

10.48 The price indices for prefabricated dwellings and “self-builds” exclude the cost of the land. A price index for building land is compiled from official figures on the transaction prices of building land, recorded at the time a contract is concluded. Each data set incorporates the following characteristics: location; characteristics of the municipality; sale date; size of plot; the details of the outline planning permission e.g. whether for a house or for flats and building size. Unlike Statistics Canada’s NHPI, coverage is not restricted to development tracts – the German index attempts to cover all newly-built homes.

10.49 The aggregate price index for developed building land is a weighted average, using the total sales value, of unit value indices for sub-aggregates. These sub-aggregates are formed on the basis of regional differentiation, mainly a differentiation by districts, building area types and municipality size classes within federal states. The federal states are weighted by combining data on the total of prices paid for developed building land in residential building areas and in rural areas, turnover achieved through building activity and the number of building permits for residential buildings with one or two dwellings.

Case study: Japan

Information on Property Prices

10.50 In Japan, official property price indices only relate to land prices. Information provided by the public sector includes the Public Notice of Land Prices (PNLP) conducted by the Ministry of Land, Infrastructure, Transport and Tourism (MLIT), the Land Price Survey of each prefecture, the Land Value for Inheritance Tax of the National Tax Agency, and the Land Value for Fixed Asset Tax of each municipal government. All of these sources of information represent appraisal values estimated by licensed real estate appraisers.

10.51 Information on residential property price indices (including structures) is collected by the private sector. The most representative property data set is called REINS, which stands for the Real Estate Information Network System. REINS is a data network that was developed using the multi-listing service (MLS) of the US and Canada as a model; the information is obtained via real estate brokers. The REINS data set contains both the asking price when the property is put on the market and the final transaction price at the time of the sale contract. A second, and quite unique, housing price data source is accumulated through housing advertisement vendors. Both data sources have been used by the private sector to compute and publish housing price indices. However, all of these indices have shortcomings and do not fully meet the needs of users. MLIT has therefore begun a work programme which should lead to the construction of an improved index. This will be the first residential property price index to be published by the public sector.
<table>
<thead>
<tr>
<th>Index</th>
<th>Sample</th>
<th>Method</th>
<th>Seasonally adjusted? And (frequency)</th>
<th>Weighing method</th>
<th>Stage of process</th>
</tr>
</thead>
<tbody>
<tr>
<td>Land Price Cumulative Change Rate Index (MLIT)</td>
<td>Appraisal prices in Public Notice of Land Prices by MLIT</td>
<td>Preceding term index x Avg. Volatility</td>
<td>No (Annual)</td>
<td>No</td>
<td>Appraisal value in January 1st every year (published in the end of March)</td>
</tr>
<tr>
<td>Major City Land Transaction Price Basic Statistic (MLIT)</td>
<td>Sales prices</td>
<td>Average value of unit price per square metre, median value, standard deviation, quartile, etc.</td>
<td>No (Quarterly or annually)</td>
<td>No</td>
<td>Survey after sale registration (sales price)</td>
</tr>
<tr>
<td>Urban Land Price Index (Japan Real Estate Institute)</td>
<td>Appraisal prices in Public Notice of Land Prices by Japan Real Estate Institute</td>
<td>Preceding term index x Avg. change rate</td>
<td>No (Semi-annual)</td>
<td>No</td>
<td>Appraisal value in the end of March and September every year</td>
</tr>
<tr>
<td>Recruit Residential Price Index (Recruit Housing Institute)</td>
<td>Final asking prices in Magazine or Online prices in Magazine or Online</td>
<td>Overlapping Periods Hedonic Regression</td>
<td>Yes (Monthly)</td>
<td>Volume</td>
<td>Offer made (final asking price)</td>
</tr>
<tr>
<td>Residential Market Index (Japan Real Estate Institute, At Home Co., Ltd., Ken Corporation)</td>
<td>Asking prices or sales prices</td>
<td>Unit price per square metre (building age adjusted by hedonic regression)</td>
<td>No (Semi-annual)</td>
<td>No</td>
<td>Offer made? (asking price or sales price)</td>
</tr>
<tr>
<td>Tokyo Area Condominium Market Price Index (Japan Research Institute, Limited Real Estate Information Network for East Japan)</td>
<td>Sales prices registered at the Real Estate Information Network for East Japan</td>
<td>Hedonic regression</td>
<td>No (Monthly)</td>
<td>No</td>
<td>Completion of sales (sales price)</td>
</tr>
<tr>
<td>Newly-Built Condominium Price Change Index (Tokyo Kantei Co., Ltd.)</td>
<td>Asking prices</td>
<td>Moving average</td>
<td>No (Quarterly)</td>
<td>No</td>
<td>(asking price)</td>
</tr>
</tbody>
</table>

Source: Shimizu, Nishimura and Watanabe
An overview of all property price indices in Japan is provided in Table 10.1. This includes indices based on land appraisal values as well as indices relating to property sales. It is the latter that generates the material for residential property price indices.

Asking Prices and Selling Prices

10.52 In Japan, the seller of a house usually sells it through a real estate broker. Individuals that contract with a broker have to sign one of two forms of a sales agent contract: the exclusive agency contract or the sole agency contract. The other option is to select a general agency contract. These contracts are regulated under Article 34-2 of the Building Lots and Buildings Transaction Business Law.

10.53 In the case of the exclusive agency contract, the seller can receive a report at least once a week from the real estate broker, but the seller loses the right to ask another broker to find a buyer and to look for a buyer himself. In the case of the sole agency contract, another broker cannot be asked to find a buyer, but the seller can look for a buyer on his own and the report from the broker will be at least bi-weekly. In the case of a general agency contract, the seller can look for a buyer on their own and ask multiple brokers to find a buyer. On the other hand, the seller does not receive reports from brokers.

10.54 In the case of the exclusive agency contract, the contracted broker must register the listing in REINS within five days of concluding the listing agreement and is required to widely look for buyers. In the case of the sole agency contract, the broker must register the listing in REINS within seven days and do the same. For registration in REINS, brokers are not only required to record the asking price at the moment of registration but also the final transaction price. Thus for some transactions made via brokers, both the asking price and the final transaction price are registered.

Public Data Gathering System of Transaction Prices

10.55 MLIT has compiled and published information on property transaction prices since 2005. Property transactions are registered by the Legal Affairs Bureau which then sends “Change in Register Information” to MLIT. Based on this information, MLIT sends a questionnaire to the buyer on vacant lots, land with buildings, buildings with compartmentalised ownership (such as office, retail, and apartments) asking for the transaction price. Next, information is added by real estate appraisers or their counterparts. This information includes building use, lot conditions (land form, etc.), road conditions (width of fronting road, etc.), distance to the nearest railway station and other information related to convenience, and legal regulations such as city planning. The resulting “Transaction Case Data” collected in this way is then made anonymous so that the actual property cannot be identified, and is then published as transaction price information on MLIT’s website. (10) Since neither the supply of information on transaction prices nor the supply of the information requested from real estate appraisers is mandatory, non-response and timeliness are issues. The information supplied, including the transaction price, cannot be independently verified.

Time Line for Buying and Selling a House and Price Accuracy

10.56 The choice of data source is of importance when calculating a housing price index. There are various issues involved, such as the moments at which price data is collected, the change in “price” (from the initial asking price to the final transaction price), and how timely the price data is released. Figure 10.2, which is borrowed from Shimizu, Nishimura and Watanabe (2011), shows the real estate price information which is currently available in Japan on a time axis. On the right, four stages are distinguished with prices P1 to P4. The corresponding time periods between those moments are: the “term” TM1 between the start of the selling process and the moment a buyer is found; the term TM2 from when a buyer is found until the sale contract is finalized; and the term TM3 between the final sale contract and the registration of the selling price in the government’s database.

(*) See www.land.mlit.go.jp/wetland.
Figure 10.2. Property Information Flow

<table>
<thead>
<tr>
<th>Timing of events in real estate transaction process</th>
<th>Real estate price information</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1. House placed on market</td>
<td>P1. Asking price in Magazine or Online</td>
</tr>
<tr>
<td>T2. Offer made</td>
<td>P2. Final asking price in Magazine or Online</td>
</tr>
<tr>
<td>T3. Mortgage approved</td>
<td>P3. Transaction price in REINS</td>
</tr>
<tr>
<td>T5. Completion of sale with Land Registry or REINS</td>
<td></td>
</tr>
<tr>
<td>T6. Transaction registered with Land Registry</td>
<td></td>
</tr>
<tr>
<td>T7. Transaction price survey based on Land Registry</td>
<td></td>
</tr>
</tbody>
</table>

Source: UK Office for National Statistics

10.57 The average duration of TM1 is 70 days. That is, on average a buyer is found 70 days after the seller enters into the selling process; the maximum duration was 3.72 years. The ratio of P2 to P1 is 0.976 on average, meaning that the price drops by 2.4% from the initial asking price to the last asking price. On average, TM2 is 39 days. The ratio of P3 to P2 is 0.956 on average, i.e. on average the transaction price is 4.4% lower than the final asking price. TM3 is on average 109 days. This means that (for surveyed transaction price data) there is a time lag of approximately 3 months until the selling price is registered in the government's database. The price differentials at different points in the selling process can, of course, vary over time depending on the state of the owner-occupier housing market.
Comparative Analysis of House Price Indices in Tokyo Metropolitan Area

10.58 Figure 10.3 compares four property price indices. The REINS data are used by the Real Estate Information Network for East Japan and the Japan Research Institute who jointly produce the Tokyo Used Condominium Price Index. This monthly index has been published since 1995 and is constructed using a hedonic regression method. The Recruit Residential Price Index (RRPI) is also a hedonic price index, based on the final offer price of properties in Recruit’s magazine, and relates to re-sold single family homes and condominiums. This index is also monthly and has been published since January 1986, although only widely available in its current form since the beginning of 2000. Two land price indices, thus excluding buildings, are shown in Figure 10.3, the bi-annually ULPI and the yearly PNLP. These are appraisal-based indices. The property price indices that include the structures clearly show a different trend than the land price indices. Also, the former began to recover some years after the financial crisis in 2008 whereas the latter continued to decrease. Notice that the REINS index is much lower than the RRPI, in spite of the fact that both are hedonic indices.

Case Study: United Kingdom

10.59 The UK probably has more house price indices published on a regular basis than any other country. The range of residential property price indices that are published in the UK mainly stems from the interrogation and exploitation by different organisations of the different data sets which are generated at different points in the process of buying and selling a house. The latter often takes place over a period of several months or more and the particular stage in this process at which the price is abstracted and entered into an index can impact on the measured rate of house price inflation. In the UK the exploitation of data on property prices occurs at the following stages:

- As soon as the property is on the market. Asking price. Data source: estate agents. Publisher: estate agents, Financial Times and property websites.

(19) The Recruit Residential Price Index uses the time dummy method and, in consequence, is subject to revision (see Chapter 5).

(20) See Shimizu, Takatsuji, Ono and Nishimura (2010) for details.

• Mortgage approved. **Valuation by mortgage lender.** Data source: mortgage lenders. Publishers: various mortgage lenders.

• Mortgage completed. **Mortgage completion price.** Data source: mortgage lenders. Publishers: The Department for Communities and Local Government (DCLG)

• Transaction registered. **Transaction price.** Data source: Land Registry.

The time-line for buying and selling a house in the UK, including the different points at which information is collected and used to produce a house price index, is given in Figure 10.4.

10.60 The UK currently has two official house price indices. One is published monthly by the Department of Communities and Local Government (DCLG) and is based on information provided by mortgage lenders, through the Council of Mortgage Lenders, on valuation price at the point when the sale is completed. It is published about six weeks after the reference date for the house sale – or, on average, about four-five months after a house is first put up for sale. It only covers purchases involving a mortgage. The other is published monthly by Land Registry based on sales of properties registered with them. It is published a month after the reference date; i.e., one month after the registration of the sale but suffers from a lack of timeliness due to delays from homebuyers or their agents notifying the Land Registry of transfers of ownership.

10.61 Two mortgage lenders, Halifax and Nationwide, publish indices based on their valuations of a property at the time that they grant a mortgage. These indices are produced within a few weeks of the reference data for granting the mortgage and about three to four months after a property is put up for sale. They are a little more timely than the official DCLG index but have a much more restrictive coverage with no guarantee that the properties that they have granted mortgages on are representative of either all property transactions or all purchases involving a mortgage.

10.62 Another index is compiled by an organisation named Hometrack, a business service company which provides a range of market intelligence on the housing market to organisations across the residential sector including Developers, Housing Associations, Corporate Investors, Estate Agents, and Local and Central Government. Hometrack conducts a monthly survey of estate agents who are asked to give their view on the achievable selling price for each of four standard property types. It is the most timely of all the published indices, being published about three to four weeks after the reference period with no other time-lags involved, but it is an opinion survey of the likely selling price of properties on the market.

A research based consultancy firm, Acadametrics, also publishes a house price index based on data provided by the Land Registry. The LSL/Acadametrics index is published a few weeks after the end of the reference period based on an “index of indices” forecast method. The index for each time period is subsequently revised until all transactions have been included. An index based on asking prices advertised on the Rightmove property website is also widely used in the UK.
Table 10.2. Indices of Residential Property Prices – Published in the UK

<table>
<thead>
<tr>
<th>Index</th>
<th>Sample</th>
<th>Method</th>
<th>Seasonally adjusted?</th>
<th>Weighing method</th>
<th>Stage of process</th>
</tr>
</thead>
<tbody>
<tr>
<td>DCLG (1)</td>
<td>Sample of Mortgage Lenders</td>
<td>Mix-adjustment and hedonic regression</td>
<td>Yes</td>
<td>Expenditure</td>
<td>Mortgage completion (transaction price on mortgage document)</td>
</tr>
<tr>
<td>Land Registry (monthly)</td>
<td>Sales Registered in England and Wales with a previous sale since 1995.</td>
<td>Repeat Sales Regression</td>
<td>Yes</td>
<td>Expenditure</td>
<td>Sale registration (transaction price)</td>
</tr>
<tr>
<td>Halifax</td>
<td>Halifax loans approved for house purchase</td>
<td>Hedonic regression (quality adjustment)</td>
<td>Yes</td>
<td>Volume</td>
<td>Mortgage approval (valuation price)</td>
</tr>
<tr>
<td>Nationwide</td>
<td>Nationwide loans approved for house purchase</td>
<td>Hedonic regression (quality adjustment)</td>
<td>Yes</td>
<td>Volume</td>
<td>Mortgage Approval (valuation price)</td>
</tr>
<tr>
<td>Hometrack</td>
<td>Survey of estate agents (valuations)</td>
<td>Mix-adjustment</td>
<td>No?</td>
<td>Expenditure</td>
<td>Achievable selling price</td>
</tr>
<tr>
<td>Rightmove</td>
<td>Asking prices posted on website</td>
<td>Mix-adjustment</td>
<td>No</td>
<td>Expenditure</td>
<td>(asking price)</td>
</tr>
<tr>
<td>LSL/ Acadametrics</td>
<td>Sales Registered in England and Wales</td>
<td>Forecasting model, includes mix adjustment</td>
<td>Yes</td>
<td>Volume</td>
<td>Sale registration (transaction price)</td>
</tr>
</tbody>
</table>

Source: UK Office for National Statistics

10.63 Table 10.2 summarises the scope and definition plus the main aspects of compilation method for the seven indices available in the UK shown in the time-line in Figure 10.4. Given the differences in definition, scope and coverage it is not surprising that these indices when taken together do not always show a coherent picture.

Case Study: India

10.64 Movement in prices of real estate, particularly residential housing, is of vital importance to the macro economy of India as well as to individual households. It is not surprising that there is a user demand for a relevant and reliable index for tracking house price movements. But a lack of transparency in the residential property market transactions and limited availability of price information pose important challenges for keeping track of real estate price dynamics.

10.65 Registration of the property price is a legal necessity for any property transaction in India. So in principle, the official authority of property registration has the details of all transactions during a reference period. In theory the data are available on a daily basis with a month lag from first reporting a change of ownership. However, it is well known that the registered prices of houses are grossly underestimated due to very high registration fees and stamp duty. The subsequent obligations for the payment of property tax acts as a further disincentive to individual purchasers (except corporate bodies) for revealing the exact sale price of a house. Furthermore, the registration procedure and records maintenance are not computerized and the records are maintained in regional languages which necessitates further work with respect to bringing them into common format.

10.66 For these reasons, the administrative data relating to the registration of changes of ownership are not exploited and an alternative source of data has had to be found. This alternative data source relates to market data based on transaction prices collected by the National Council of Applied Economic Research (NCAER), a national level research organisation, from Resident Welfare Associations (RWAs), real estate agents and brokers. The valuation data of housing loans financed by Banks and Housing Finance Companies (HFCs) are collected to supplement the actual transaction price data collected through survey. These data are then used to compile the National Housing Bank’s RESIDEX index.

The NHB RESIDEX Index

10.67 NHB RESIDEX is a pioneering attempt by the National Housing Bank (NHB), an apex bank for the housing sector owned by the Central Bank of India, to measure residential prices in India. As a pilot, five cities – Bangalore, Bhopal, Delhi, Kolkata and Mumbai – were studied. The process of data collection posed many challenges. There were also several methodological issues relating to the analysis of data. In the event and after much work, the NHB launched its first RESIDEX for tracking prices of residential properties in India, in July 2007. The index is based on actual transactions using the sale price...
Methods Currently Used

plus supplementary data on valuations. Primary data on housing prices is collected from real estate agents by commissioning the services of a consultancy/research organization of national repute, who obtain transaction prices. In addition, data on housing prices are also collected from the housing finance companies and commercial banks. The latter relates to the valuation prices associated with the housing loans contracted by these institutions.

10.68 The salient features of NHB’s RESIDEX are:

- It covers all types of residential properties in fifteen cities.\(^{(23)}\)
- With 2007 as base, NHB RESIDEX index is produced on a quarterly basis.\(^{(24)}\)
- Alternative series are compiled based on transaction weights and stock weights.
- It covers cash purchases and purchases financed via a loan.
- It covers new and old constructions.
- The index is constructed “using weighted averages of price relatives”.\(^{(25)}\)

\(^{(23)}\) In due course, based on experience and depending upon the availability of data, it may be expanded to cover commercial properties, as well.

\(^{(24)}\) 2001 was taken as the base year for the pilot index based on five cities to be comparable with the base year(s) of Wholesale Price Index and Consumer Price Index. Year-on-year price movements during the period 2001-2005 were captured, and subsequently updated for two more years i.e. up to 2007. The index was then expanded to cover ten more cities viz., Ahmedabad, Faridabad, Chennai, Kochi, Hyderabad, Jaipur, Patna, Lucknow, Pune and Surat, at which point the base year shifted from 2001 to 2007.

\(^{(25)}\) It should be noted that this is a weighted Carli index and as such is likely to have an upward bias; see CPI Manual (2004), page 161.

10.69 For a country the size of India the geographical dimension is important. For example, the city-wise price indices, shown in Figure 10.5, help home buyers with their purchase decisions by enabling comparisons between localities and help builders and developers in making future investment decisions.

10.70 Development of the NHB RESIDEX to increase its relevance to users continues:

- The index will be expanded in a phased manner to cover all 35 cities in India having a million plus population as per the 2001 Census.
- There is a proposal to expand NHB RESIDEX to 63 cities which are covered under the Jawaharlal Nehru National Urban Renewal Mission, the flagship national mission of the Government of India, to make it a National Index.
- In due course, based on experience and depending upon the availability of data, it may be expanded to cover commercial properties.

Figure 10.5. NHB RESIDEX Indices – India Citywise index

Source: National Housing Bank of India

©International Monetary Fund. Not for Redistribution
Methods Currently Used

Case Study: Colombia

10.71 A house price index for existing houses, the IPVU, is compiled by the Banco de la República (Central Bank of Colombia). There are some other indices that relate to construction costs and the prices of new housing units, which are produced by DANE (the national statistics office of Colombia). No series is produced which amalgamates the information from the two series to produce an index covering sales of all residential property in Colombia. In the past, consideration was given to the exploitation of administrative data but this was found not to be possible due to the complexities involved.

The IPVU

10.72 The project to construct a price index for existing houses in Colombia, the IPVU, started in 2003. In the past, the lack of access to basic information had been the principal barrier to the construction of such index. After consulting with several lending banks about the importance of having a measure of the value of existing houses, the project was launched with finance from the Central Bank of Colombia (Banco de la República). The Statistics Section of Banco de la República is in charge of the production and publication of the index.

10.73 The IPVU is restricted to the principal metropolitan areas of Colombia, covering the cities of Bogotá, Medellín, Cali and Soacha in Cundinamarca, and Bello, Envigado and Itagüí in Antioquia. The index is calculated using information from loan’s appraisals reported by the mortgage lending banks Davivienda, BBVA, Av. Villas, Bancolombia, Colmena BCSC and Colpatria. In consequence, the index covers only properties purchased using a loan – cash purchases are excluded. The banks provide the Banco de la República with the commercial values and addresses of all approved mortgages. The prices which are entered into the index are taken from independent valuations required by the mortgage lender. The valuation is close to the market price when the disbursement is made. The index is published on the Bank’s webpage, on a quarterly basis with a lag of a quarter and is revisable on a quarterly basis, reflecting the repeat sales methodology used (see below). In addition an index is published based on annual averages. Sub-indices are produced for the principal metropolitan areas: Bogota; Medellin; and Cali.

10.74 Houses are classified according to whether they receive subsidies or not. These relate to the VIS and NOVIS indices, respectively. The receipt of a subsidy depends on the value and location of the house. The term Low-Income Housing (LIH or VIS in Spanish) refers to residences which are developed to guarantee the right to a house for low-income households. On each development plan, the national government will establish the maximum price and type of residences meant for these households. They will take into account, amongst other aspects, households’ access to credit markets, the amount of credit funding available from the financial sector, and available government funds aimed to target housing programs. (*)

10.75 The methodology applied is similar to the Case-Shiller repeat sales methodology. There is a lack of detailed information on the characteristics of housing needed to address the constant “mix” requirements of the Case-Shiller method through the use of stratification. However, progress is being made with the expectation that the information provided by the mortgage lending banks will in the future include a wide array of data on house specific characteristics. The current lack of detailed characteristics is dealt with by data editing. If the property shows an “abnormal” price change, i.e. if it is deemed to be an outlier, the price information is discarded and does not enter the index. This is in order to prevent re-modelled or neglected houses from entering the index. The index is revisable, reflecting one of the characteristics of the repeat sales methodology.

A comparative Analysis

10.76 The detailed sub-indices which are available provide the opportunity for a more-detailed analysis of the market in existing homes. An indication of the range of outputs available to the user is given by Figures 10.6-10.10. The “indice nominal” uses the prices reported by the Banks, i.e., it is not deflated; the “indice real” is the IPVU deflated by the CPI average for the year. In the case of quarterly indices the IPVU is deflated by the CPI quarterly average.

(*) For more information on this topic, see http://www.cijuf.org.co/codian03/junio/c31847.htm.

(26) The integration of the two indices would raise the issues of a lack of consistency and incoherence. For example, the IPVU index is based on independent valuations when a mortgage is applied for and the DANE index is based on asking price.

(27) For more information on this topic, see http://www.cijuf.org.co/codian03/junio/c31847.htm.
Methods Currently Used

Figure 10.6. Quarterly National House Price Index for Existing Units – Nominal and Real (Base 1990 = 100)

Source: Departamento de Programación e Inflación Banco de la República, Colombia

Figure 10.7. Quarterly National Real House Price Index for Existing Units – Annual Percentage Changes

Source: Departamento de Programación e Inflación Banco de la República, Colombia
Methods Currently Used

Figure 10.8. Annual National House Price Index for Existing Units (1)
(Base 1990 = 100)

The annual publication of the IPVU takes the average index level over a period of twelve months and compares it with the average for the previous twelve months.

Source: Departamento de Programación e Inflación Banco de la República, Colombia

Figure 10.9. Annual Real House Price Index for Existing Units – Principal metropolitan areas
(Base 1990 = 100)

Source: Departamento de Programación e Inflación Banco de la República, Colombia
Case Study: South Africa

The following case study from South Africa provides an illustration of the obstacles to the compilation of a residential property price index when a significant proportion of the housing stock relates to informal or traditional dwellings.

Introduction to the South African Housing Market

Diverse dwelling types characterise the South African housing stock; it consists of formal, informal, tribal, and other accommodation in backyard or shared property housing. Formal housing includes stand-alone houses (government subsidised and private houses), attached townhouses and flats (apartments), whereas informal housing, that is housing which does not have planning consent and will not be registered by the authorities, includes shacks (typically built out of corrugated steel plates) and traditional dwellings includes rondavels and huts made of traditional materials. Backyard housing consists of dwellings that are situated in a backyard of a property with a main house, and shared property housing occurs when more than one dwelling is constructed on a single stand. The distribution of the South African housing market is as in Table 10.3. According to the 2001 Population Census, the number of dwellings in the formal market has increased by 37.1% from 1996 to 2001; informal housing by 26.4% and traditional dwellings by 0.6%. In contrast, backyard or shared property has decreased by 14.5%.
In South Africa, builders and/or property developers construct all residential property, with the exception of tribal and informal housing. For the construction of formal housing, a monetary transaction takes place by financing the dwelling with the money of the buyer and/or a mortgage bond. The dwellings and their values are recorded at the local municipality and deeds office. For tribal and informal housing, very few monetary transactions take place. Where they do take place, the transactions will be small cash expenditures but the dwelling will generally not be recorded by a local municipality. However, due to the demand for basic services, government has begun to record the number of dwellings in informal settlements and rural areas, but the value of the dwelling is not recorded. The situation represents an exceptional challenge for compilers of residential property price indices.

Residential Property Price Indices in South Africa

There are various house indices published in South Africa, but not by Statistics South Africa. Published house price indices include the First National Bank (FNB) House Price Index, the ABSA House Price Index and the Standard Bank Median House Price Index. ABSA, FNB and Standard Bank have the majority of the banking market share in South Africa. ABSA, FNB and Standard Bank have the majority of the banking market share in South Africa. ABSA, FNB and Standard Bank have the majority of the banking market share in South Africa. ABSA, FNB and Standard Bank have the majority of the banking market share in South Africa. ABSA, FNB and Standard Bank have the majority of the banking market share in South Africa. ABSA, FNB and Standard Bank have the majority of the banking market share in South Africa. ABSA, FNB and Standard Bank have the majority of the banking market share in South Africa.

The FNB house price series is constructed using the average value of housing transactions financed by FNB. To eliminate outliers from the data sample, transaction values included in the sample must be above 70% of FNB Valuations Division's valuation of the property but below 130%, while purchase prices recorded as above R10-million are excluded. In order to reduce the impact on the index of rapid short-term changes in weightings of different property segments, due to relative shifts in transaction volumes, the weightings of the different market segments according to number of rooms are kept constant at their 5-year average weighting. A statistical smoothing function is applied to the data and the data may be revised. The FNB index is calculated monthly.

ABSA House Price Index (HPI) measures the nominal year on year house price movements of houses purchased through approved mortgage loans from ABSA. The ABSA HPI is based on the total purchase price of houses in the 80m² - 400m² size category, priced at R31 million or less (including improvements). Prices were smoothed in an attempt to exclude the effect of seasonal factors and outliers in the data. The index is calculated monthly.

Standard Bank’s index is based on the median house price of the full spectrum of houses, using a five-month moving average. National data from the Deeds Office are available only with a lag of up to nine months, so data from Standard Bank, which has a market share of about 27.7% and whose data are generally highly correlated with those of the Deeds Office, are considered a good proxy for the national market. The index is constructed on a monthly basis.

Limitations to the Construction of a Residential Property Price Index

In the construction of the above house price indices only formal housing (i.e., houses, townhouses and flats) purchased by means of a loan are included – cash sales and “informal” housing are excluded. The difficulty in constructing an RPPI in South Africa is mainly due to the lack of acceptable estimates on housing stock and price information on informal and traditional dwellings. These dwellings make up 19.6% of all structures and therefore constitute a significant sector of the market in South Africa.

The sector also has its own distinct features. For example, what defines an informal dwelling?

- Residential areas where a group of housing units has been constructed on land to which the occupants have no legal claim, or which they occupy illegally;

Table 10.3. Tenure Status – All Housing in South Africa (According to Census 2001)

<table>
<thead>
<tr>
<th>Housing type</th>
<th>Total</th>
<th>Owner-occupiers (%)</th>
<th>Renters (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Houses</td>
<td>6238454</td>
<td>66.1</td>
<td>45.6</td>
</tr>
<tr>
<td>Subsidised housing (*)</td>
<td>1074028</td>
<td>9.6</td>
<td>–</td>
</tr>
<tr>
<td>Flats</td>
<td>589109</td>
<td>2.9</td>
<td>16.3</td>
</tr>
<tr>
<td>Townhouses</td>
<td>319868</td>
<td>3.3</td>
<td>4.1</td>
</tr>
<tr>
<td>Informal</td>
<td>1836230</td>
<td>10.3</td>
<td>18.4</td>
</tr>
<tr>
<td>Traditional</td>
<td>1654787</td>
<td>15.0</td>
<td>4.1</td>
</tr>
<tr>
<td>Backyard or shared property</td>
<td>532986</td>
<td>2.4</td>
<td>11.5</td>
</tr>
<tr>
<td>Total</td>
<td>11171434</td>
<td>100.0</td>
<td>100.0</td>
</tr>
</tbody>
</table>

(*) National Treasury estimate.

Source: Statistics South Africa
Unplanned settlements and areas where housing is not in compliance with current planning and building regulations;

Informal dwellings are typically built out of corrugated steel plates for the walls and roof (shack);

The households themselves mostly build these dwellings. What is a traditional dwelling?

This is a general term, which includes huts, rondavels (29), etc. Such dwellings can be found as single units or in clusters.

The dwelling can be made of clay, mud, reeds or other locally available materials.

Primary Concerns in the Construction of a Residential Property Price Index

10.86 As stated elsewhere in this handbook, two main problems in the construction of a residential property price index are the sporadic nature of transactions and a lack of matching due to the fact that houses have unique price determining characteristics. In the case of formal housing, these two factors apply, but for informal housing, the second factor is much less important. Informal dwellings have, exceptionally, standard attributes since most of them are made of corrugated steel and have one to four rooms. Similarly their location will tend to be in the same types of areas. In these circumstances the matching principle may not be difficult to apply. In addition, the fact that the owner of the shack does not own the land that the dwelling stands on, implies that a decomposition of the index into land and structures is not relevant. The census 2001 indicated that the distributions of rooms are as in Table 10.4.

10.87 For traditional dwellings, the decomposition into land and structures is not relevant either. In this case, the land is allocated to the person or household by the chief of the tribal area, and no cost or only a small fee is levied. However, to estimate the price of the dwelling may prove problematic if, unlike formal dwellings, mainly natural materials are used in the construction.

Table 10.4. Distribution of Number of Rooms in Informal Dwellings

<table>
<thead>
<tr>
<th>Number of rooms</th>
<th>% of total informal dwellings</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>40.0</td>
</tr>
<tr>
<td>2</td>
<td>27.2</td>
</tr>
<tr>
<td>3</td>
<td>15.1</td>
</tr>
<tr>
<td>4</td>
<td>10.5</td>
</tr>
<tr>
<td>5+</td>
<td>7.2</td>
</tr>
</tbody>
</table>

Source: Statistics South Africa

Weighting of Non-Formal Housing

10.88 Weighting of non-formal (informal and traditional) housing will be complex in nature as the owners construct most of the dwellings themselves and monetary transactions are limited. In addition, materials for the construction of an informal dwelling are mostly second-hand and for traditional dwellings, natural materials are used; cost estimates for these types of materials are difficult to obtain and, indeed, they may have been gathered rather than purchased.

10.89 Although most of the characteristics of the dwellings are known from the population census, the value of an informal or traditional dwelling is difficult to estimate because there are no organised markets and the values are not registered at a deeds or land registration office. Also, the movement of informal dwellings from one settlement to another may pose a problem in the estimation of the housing stock. The rate of new constructions and demolitions would be unknown, since it is uncertain whether all dwellings that were broken down were erected once more in the new area.

Pricing of Non-Formal Housing

10.90 Non-formal house prices do not depend on normal market price determinants. The plot area, location, age and renovations typically do not affect the price. The only aspects that influence the cost of the dwelling are the materials used and this is of course influenced by the size of the structure; see Table 10.5.

(29) A circular often thatched building with a conical roof.
Table 10.5. Price Determinants

<table>
<thead>
<tr>
<th>Price determinants</th>
<th>Traditional dwellings</th>
<th>Informal dwellings</th>
<th>Formal dwellings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area of structure</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Area of land</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Location</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Age</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Renovations</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Type of structure</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Materials</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Other price determining characteristics</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Source: Statistics South Africa

Table 10.6. Percentage of Materials Used in the Construction of Informal and Traditional Dwellings in South Africa

<table>
<thead>
<tr>
<th>Year</th>
<th>2002</th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>Materials used for roof</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrugated iron/zinc</td>
<td>72.1</td>
<td>72.1</td>
<td>71.6</td>
<td>78.2</td>
<td>79.5</td>
<td>78.6</td>
<td>78.6</td>
<td>83.6</td>
</tr>
<tr>
<td>Organic materials</td>
<td>23.2</td>
<td>24.2</td>
<td>23.8</td>
<td>16.8</td>
<td>16.2</td>
<td>17.1</td>
<td>15.8</td>
<td>13.3</td>
</tr>
<tr>
<td>Asbestos</td>
<td>1.9</td>
<td>1.6</td>
<td>1.4</td>
<td>1.7</td>
<td>1.8</td>
<td>1.2</td>
<td>2.1</td>
<td>0.5</td>
</tr>
<tr>
<td>Other</td>
<td>2.6</td>
<td>2.1</td>
<td>3.1</td>
<td>3.2</td>
<td>2.1</td>
<td>3.1</td>
<td>3.1</td>
<td>2.2</td>
</tr>
<tr>
<td>Total</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>Materials used for walls</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bricks</td>
<td>2.6</td>
<td>3.3</td>
<td>2.3</td>
<td>1.8</td>
<td>1.4</td>
<td>1.6</td>
<td>2.3</td>
<td>1.9</td>
</tr>
<tr>
<td>Cement block/concrete</td>
<td>2.9</td>
<td>2.2</td>
<td>2.8</td>
<td>1.9</td>
<td>2.5</td>
<td>2.3</td>
<td>2.4</td>
<td>1.4</td>
</tr>
<tr>
<td>Corrugated iron/zinc</td>
<td>35.1</td>
<td>36.1</td>
<td>33.9</td>
<td>40.0</td>
<td>43.6</td>
<td>43.9</td>
<td>41.4</td>
<td>42.2</td>
</tr>
<tr>
<td>Wood</td>
<td>9.8</td>
<td>9.4</td>
<td>8.9</td>
<td>9.6</td>
<td>10.5</td>
<td>10.8</td>
<td>10.1</td>
<td>8.6</td>
</tr>
<tr>
<td>Mud and cement mix</td>
<td>7.0</td>
<td>5.2</td>
<td>6.3</td>
<td>5.0</td>
<td>5.8</td>
<td>6.5</td>
<td>6.7</td>
<td>10.4</td>
</tr>
<tr>
<td>Wattle and daub</td>
<td>1.4</td>
<td>1.1</td>
<td>1.7</td>
<td>1.0</td>
<td>0.5</td>
<td>0.9</td>
<td>1.3</td>
<td>1.2</td>
</tr>
<tr>
<td>Mud</td>
<td>38.2</td>
<td>39.8</td>
<td>41.8</td>
<td>37.2</td>
<td>33.7</td>
<td>31.8</td>
<td>32.8</td>
<td>31.8</td>
</tr>
<tr>
<td>Other</td>
<td>2.6</td>
<td>2.9</td>
<td>2.3</td>
<td>2.6</td>
<td>1.8</td>
<td>2.2</td>
<td>2.9</td>
<td>2.5</td>
</tr>
<tr>
<td>Total</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Source: Statistics South Africa

10.91 Price collection for traditional and informal dwellings would be very difficult, since the owner constructs the dwelling him/herself in most cases and monetary transaction for the complete dwelling rarely takes place (the purchases of materials are normally in cash). The only way to obtain prices of newly constructed informal and traditional dwellings is to conduct a survey of newly constructed dwellings on a frequent basis, since most of these are not registered at the deeds office, and if registered, the value of the dwelling is not recorded. An alternative for these types of dwelling, yet to be explored, is to compile a “notional cost of construction” index based on the pricing of quantity information of the type that is shown in Table 10.6.\(^{(30)}\)

\(^{(30)}\) See Blades (2009).

Summary

10.92 It would be a very complex task to calculate a comprehensive residential property price index for South Africa, due to the diverse nature of housing in the country. Different methods will be required for the collection of prices for different housing types. In addition, weight estimation for each type of housing will be difficult, as different housing types have different cost determining characteristics. Furthermore, the limited data availability for each housing type exacerbates the problem.

10.93 The primary barriers to the construction of an inclusive residential property price index in South Africa are listed in Table 10.7 and include:

- The absence of an organised market for informal and traditional housing;
Methods Currently Used

- The absence of reliable data estimates on the cost of informal and traditional housing;
- The nomadic life-style. If a survey is conducted, movements of informal settlements from one area to another pose a problem in terms of measuring the price development of this type of housing because prices are normally collected in specific areas;
- There is no registration of property at the Deeds Office;
- Monetary transactions do not always take place to obtain or build the dwelling;
- Prices do not depend on typical price determining factors such as the price of land, and labour and material costs.

Table 10.7. Evaluation of Barriers

<table>
<thead>
<tr>
<th>Possible problems</th>
<th>Traditional dwellings</th>
<th>Informal dwellings</th>
<th>Formal dwellings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organised market</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Reliable price estimates exist about the cost of housing</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Movements of dwelling from one settlement to another</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Registration of property at deeds office</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Monetary transaction at lending institution</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Transfer of cash for building of structure</td>
<td>Sometimes</td>
<td>Sometimes</td>
<td>Yes</td>
</tr>
<tr>
<td>Dwelling constructed by property developer or builder</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Price depends on typical price determining factors</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Source: Statistics South Africa
This page intentionally left blank
Introduction

11.1 The purpose of this chapter is to provide additional empirical examples dealing with the construction of house price indices based on the methods that were outlined in Chapters 5-9. These are broadly defined as follows: measures of central tendency (mean or median), hedonic regression methods, repeat sales methods, and methods based on appraisal data. The following three sections of this chapter illustrate how the first three classes of methods can be implemented on very small data sets. Hopefully, working through these simple examples will enable readers to more readily follow the rather terse algebraic descriptions of the various methods that were provided in Chapters 5-9.

11.2 The following section also illustrates various methods that can be used to aggregate regional house price indices into overall house price indices. This topic was not covered in any detail in other chapters of this Handbook.

Central Tendency Methods and Stratification Methods

11.3 Central price tendency estimates, such as mean and median prices, for constructing an RPPI are among the least data intensive of all the methods currently available to compilers. The basic mean or median methods only need the selling prices of the properties in a given location to build a price index. Thus location information will be required. In addition, it is usual to stratify by the type of dwelling unit and if this is the case, then information on the type of dwelling unit will also be required.

11.4 As a first exercise, an index is constructed using the mean price. It consists in calculating the simple average of the observed prices for a sample of houses in a given period and for a given geographical area. The indicator, which can be expressed in monetary terms or in index form, is then measured simply as the change (in per cent usually) of the average price of the sampled units between two periods. (1)

11.5 It is important that the sample of houses drawn for calculating the price indicator be representative of the target universe. Therefore some data editing may be required, the extent of which will depend on the instructions that the data provider received from the compiler and his willingness and ability to deliver the data according to the compiler’s stated criteria. (2) For example, the sample of prices initially collected may include certain property types, such as agricultural land, commercial properties, and units found in multi-unit dwellings, which are considered outside the scope of the intended index. If this is the case, then these observations need to be excluded from the sample when measuring price trends for specific types of properties. Outliers should also be identified and removed from the sample if it is believed that they may skew or distort in any other way the outcome.

11.6 A simple numerical example using 5 and 7 price observations respectively for periods 1 and 2 (3) will illustrate the approach used for measuring the progression of the mean of house prices for a given geographical area, usually for a city or other well-defined area. (4)

Period 1 house prices and mean

\[
(350K + 352K + 378K + 366K + 402K) / 5 = 370K
\]

Period 2 house prices and mean

\[
(360K + 350K + 382K + 395K + 380K + 400K + 450K) / 7 = 388K
\]

Once the average prices for each period, e.g., a month, a quarter or a year, are obtained, it is then straightforward to calculate the period-to-period progression (typically in per cent) between $370K and $388K. For instance, in this specific example, average house prices have increased about 5% over both periods.

11.7 The presence of outliers is mitigated when the median price of properties in the sample is used instead of the mean price. For instance, if one or more very expensive houses are sold in a given period, the resulting average price will likely not be typical of houses that are on the market at that time. As was discussed in Chapter 4, the median approach does not however completely control for period-to-period compositional shifts in the sample of houses sold. In spite of this shortcoming the median is nevertheless a very popular residential property price indicator mainly because it is simple to compile and is not very data intensive, thus resulting in a timely indicator. Moreover, its interpretation is straightforward.

11.8 Based on the same data used for calculating the mean, the median prices from the example samples for periods 1 and 2 are found to be respectively $366K and $382K. Consequently, the median house price has increased 4.4% over these two periods.

11.9 The above exercise is repeated below but with a more extensive dataset containing 5787 sampled price observations for single-family houses drawn from actual

(1) Regardless of the form used, expressed either in terms of values or indices, the per cent change will be the same.

(2) Of course, the particular circumstances will dictate the extent of the data cleaning if the principal user is also managing the collection of information, then the survey will be tailored to his or her needs and the extent of the cleaning will likely be less extensive.

(3) Since the number of transactions will likely vary from period to period, the number of price observations in the sample for each period will also vary.

(4) Note that most central tendency measures of house prices when published do not typically include indicators of statistical quality such as the coefficient of variation or standard deviation.
transactions over many years for a small municipality. (1) Some descriptive statistics are presented in Table 11.1. Note that in this particular case, the mean price of houses sold in any year is always higher than the corresponding median. For instance, in 2002 the mean is $249,702 against 236,000 for the median; in 2008 the mean is $365,195 against $340,600 for the median. Since for any given year the sample is characterized by the sale of some higher priced units, this result is to be expected. In fact, the distribution of prices is right-skewed with a skewness coefficient ranging from 1.44 to 1.87 over the various years. (2) Chart 11.1 illustrates the distribution of prices in 2008 for the houses that were sold that year. A similar graph constructed for the remaining years for this example yields similar price distributions. (3)

11.10 As for the annual per cent changes, they vary according to the measure of central tendency that is used here. (4) In some years, the difference in the result between the median and mean can be quite small. For instance, in 2002 the difference is only one tenth of a percentage point (8.2% vs. 8.1%) with mean recording a slightly higher increase. In other years, such as in 2008, the difference is more pronounced such as in 2008 when the annual change measured using the median price increased by 6.8% compared to an increase in the mean price of 5.2%.

(1) Note that the required data is obtained for calculating either the median or mean prices; the steps involved are quite simple. Most statistical software packages can do the entire exercise quite rapidly with little intervention from the compiler.

(2) Skewness is a measure of the asymmetry of a distribution. When the degree of skewness is zero this means that the distribution is symmetric around its mean. A positive skew means that a relatively high number of observations from the sample is concentrated on the left of the centre point and vice versa.

(3) With these particular data, the mean was always greater than the corresponding median. This result need not always hold, particularly with very small samples.

(4) Typically, the mean price will be higher than the corresponding median price. However, when mean and median indices are formed, there is no presumption that the mean index will increase more rapidly than the median index.

Table 11.1. Means, Medians, Percent Changes, Standard Deviations, and Skewness

<table>
<thead>
<tr>
<th></th>
<th>2002</th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observations</td>
<td>777</td>
<td>804</td>
<td>894</td>
<td>808</td>
<td>834</td>
<td>874</td>
<td>796</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>64,130</td>
<td>62,042</td>
<td>73,405</td>
<td>76,432</td>
<td>84,587</td>
<td>96,559</td>
<td>96,152</td>
</tr>
<tr>
<td>Skewness</td>
<td>1.63</td>
<td>1.51</td>
<td>1.71</td>
<td>1.87</td>
<td>1.58</td>
<td>1.46</td>
<td>1.44</td>
</tr>
<tr>
<td>Mean ($)</td>
<td>249,702</td>
<td>270,174</td>
<td>290,686</td>
<td>299,087</td>
<td>315,099</td>
<td>347,009</td>
<td>365,195</td>
</tr>
<tr>
<td>Per cent change</td>
<td>8.2%</td>
<td>7.6%</td>
<td>2.9%</td>
<td>5.4%</td>
<td>10.1%</td>
<td>5.2%</td>
<td></td>
</tr>
<tr>
<td>Median ($)</td>
<td>236,000</td>
<td>255,000</td>
<td>273,000</td>
<td>280,000</td>
<td>292,000</td>
<td>319,000</td>
<td>340,600</td>
</tr>
<tr>
<td>Per cent change</td>
<td>8.1%</td>
<td>7.1%</td>
<td>2.6%</td>
<td>4.3%</td>
<td>9.2%</td>
<td>6.8%</td>
<td></td>
</tr>
</tbody>
</table>

Source: Authors’ calculations based on MLS® data for a Canadian city

Chart 11.1: Distribution of House Prices in 2008

Source: Authors’ calculations based on MLS® data for a Canadian city
11.11 As is well known, location plays an important role in the determination of not only the level of house prices but also in their behaviour over time. Therefore, to improve the reliability of the indicator, a stratified or mix-adjustment approach is routinely recommended, provided of course that the information for segmenting the market (or sample of transactions) is readily available. Geographical stratification has the advantage of reducing the effects of period-to-period compositional shifts in the housing units that characterize the simple mean and median methods. A popular approach to segmenting the housing market is to group houses according to geographical area, thus ensuring a certain degree of homogeneity of the units found within the strata; other locational effects on house prices are also minimized by this method. Stratification can also benefit users by providing them with additional house price indicators for various sub-markets, such as by neighbourhood or type of house. Goodman and Thibodeau (2003) add that there is also a practical reason for grouping house by location in that geographic variables are almost always included in databases on housing transactions. This information should, when available, be leveraged since stratification makes efficient use of these data.

11.12 Some countries, such as Australia (Branson 2006), have taken advantage of the traditionally strong relationship between price and location that typifies residential real estate by stratifying the sample of properties according to geographical area or other submarket structures. This can be a viable, albeit imperfect, alternative (or compromise solution) for measuring constant quality price change in the absence of the resources and the data needed to apply some of the more sophisticated methods for constructing an RPPI such as hedonic regressions. In fact, Prasad and Richards (2008) construct a measure of median house prices for six Australian capital cities where the markets are stratified according to long-term price movements. Using a database of over 3 million observations, the authors find that their approach to measuring changes in house prices, (i.e., using the median approach but stratified by zone as defined by long term price trends), will generate results that are comparable to those using more sophisticated and data intensive methods such as hedonics or repeat sales.

11.13 Stratifying by geography thus likely ensures that the cluster of observations within each group (or stratum) is more homogeneous than observations from the entire population. Stratification can be extended to include, in addition to geography, other price determining factors such as house type and/or number of bedrooms. Grouping of houses by geography and other criteria will result in a sample of even more homogeneous properties, which is a desirable outcome for mitigating fluctuations in the index that are caused by compositional shifts in the sample that occur over time. One potential drawback however with this approach is that the compiler must be aware that a too finely defined stratum can sometimes generate a thin sample of transactions in any given period, thus resulting in some sampling bias. The objective is therefore to design the individual strata in such a way that the homogeneity of price determining characteristics is balanced against a sample size that is sufficiently robust to yield a reliable and representative measure of changes in house prices.

11.14 As previously mentioned, the construction of submarket (or stratum) price indices that are then aggregated to the level of the market of interest will often use median prices in practice. Constructing a mixed-adjusted price index consists in first defining the stratum. The second step is to calculate the median price for houses transacted within the stratum for the period in question. Thirdly, the median prices for all sub-markets must be weighted together into an aggregate price measure for the market under study, which likely will be a city or even the country as a whole.

11.15 The following provides a simple example of the procedure and steps involved with calculating a mixed-adjustment price index for residential properties. (*)

- Step 1: Define the stratum. For the purpose of this exercise, the stratum is a geographical subdivision of a city such as the west-zone or centre town. There is no strict rule for delineating the stratum in question but geography appears to be a popular and obvious choice which can, if data permitting, be combined with other housing features such as by house type or according to number of bedrooms in order to narrow the stratum. (9)

- Step 2: Calculate the median price for a stratum such as a neighbourhood for the relevant period (month or quarter). It is assumed that the median will be the representative price of all sales in that stratum. However, the mean price could alternatively be used. Repeat this step for future periods.

- Step 3: Estimate the “average” price of houses sold for a given period by calculating a sales weighted median of the neighbourhood or stratum prices. (10)

11.16 Suppose that data on house sales for two periods (0 and 1) and three geographical regions or neighbourhoods (A, B and C) have been collected. Suppose prices are measured in thousands of dollars and that for region A in period 0, there were 4 sales with prices 290, 450, 250 and 310. Thus, the mean price for this period was 325, the median price was 300 (the arithmetic average of the two middle prices 290 and 310) and the total expenditure was 1300. For period 1, region A had 5 sales of 300, 500, 250, 400 and 275. Thus, the mean and median price for this period was 345 and 300 respectively and the total period 1 expenditure in region A was 1725. For region B, there was only one sale in each period:

(*) This example is loosely based on an example in McDonald and Smith (2009).

(*) This example uses the neighbourhood as the sub-stratum but in reality it can be any geographical area for which the compiler is confident that a sufficiently large enough sample of transactions is available today and in the future to generate a reliable representative price.

(*) This is assuming that the compiler is using sales as the basis for the weighting.
500 in period 0 and 400 in period 1. Thus, the mean and median price in period 0 for region B was 500, which was also equal to expenditure in this period. The mean and median price in period 1 for region B was 400, which was also equal to expenditure in this period. For region C, there were 3 sales in each period. For period 0, the sales were equal to 200, 300 and 175 and so the median price was 225 and expenditure was 675. For period 1, the sales in region C were equal to 250, 350 and 225 and so the median price was 250, the mean price was 275 and expenditure was 825. These are the basic data for the example.

11.17 Suppose that the median price in each region corresponds to houses of comparable quality over the two periods being compared. Since it is desirable to have price times volume equal to expenditure in each period for each region, once a constant quality price concept has been chosen, the corresponding volume should equal expenditures divided by price. Using the median price in each region as a constant quality price for each time period leads to the data on expenditures (the \(v'\), prices (the \(p'\)) and volumes or implied quantities \(q' = v' / p'\) that are listed in Table 11.2 below.

| Table 11.2. Regional Expenditures, Prices and Volumes (Implicit Quantities) Using Median Prices as the Regional Prices |
|-------------------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Period | \(v'_A\) | \(v'_B\) | \(v'_C\) | \(p'_A\) | \(p'_B\) | \(p'_C\) | \(q'_A\) | \(q'_B\) | \(q'_C\) |
| 0 | 1300 | 500 | 675 | 300 | 500 | 200 | 4.333 | 1.000 | 3.375 |
| 1 | 1725 | 400 | 825 | 300 | 250 | 5.750 | 1.000 | 3.300 |

Source: Authors’ calculations based on MLS data for a Canadian city

Note that the regional price indices for period 1 are equal to \(p'_t / p'^1_t = 1.0\), \(p'_s / p'^1_s = 0.80\), and \(p'_c / p'^1_c = 1.25\) for regions A, B and C respectively. Thus there are widely differing house price inflation rates in the three regions.

11.18 At this point, we can apply normal index number theory to the problem of aggregating up the regional price movements into an overall house price inflation rate. For example, Laspeyres and Paasche overall price indices, \(P_L\) and \(P_P\), for period 1 can be constructed. The formulae for these indices are as follows:

\[
P_L = \left[\frac{p'_A q'_A + p'_B q'_B + p'_C q'_C}{p'^1_A q'_A + p'^1_B q'_B + p'^1_C q'_C} \right]
\]

and

\[
P_P = \left[\frac{p'_A q'_A + p'_B q'_B + p'_C q'_C}{p'^1_A q'_A + p'^1_B q'_B + p'^1_C q'_C} \right]
\]

11.19 The CPI Manual (2004) recommends the construction of superlative indices if price and quantity data are available for the periods under consideration, as they are in the present situation. Two such superlative indices are the *Fisher ideal index* \(P_F\) and the *Törnqvist-Theil index* \(P_T\), defined as follows for the period 1 overall indices:

\[
P_F = \left[P_L P_P \right]^{\frac{1}{2}}
\]

\[
P_T = \exp\left(0.5 (s'_A + s'_B) \ln(p'_A / p'^1_A) + s'_C \ln(p'_C / p'^1_C) \right)
\]

where the period \(t\) shares of sales in regions A, B and C are given by \(s'_A = v'_A / (v'_A + v'_B + v'_C)\), \(s'_B = v'_B / (v'_A + v'_B + v'_C)\) and \(s'_C = v'_C / (v'_A + v'_B + v'_C)\) respectively. Note that the Fisher (1922) index \(P_F\) is equal to the geometric average of the Laspeyres and Paasche indices, \(P_L\) and \(P_P\), and that the Törnqvist-Theil index \(P_T\) is equal to a share weighted geometric average of the regional price indices, \(p'_s / p'^1_s\), \(p'_c / p'^1_c\) and \(p'_c / p'^1_c\), where the weights are the arithmetic averages of the period 0 expenditure shares, \(s'_s\) and \(s'_c\), and the period 1 expenditure shares, \(s'_s\) and \(s'_c\).

11.20 The results for the four indices defined by (11.1) and (11.4) are listed in Table 11.3 below. It should be noted that the two superlative indices, \(P_F\) and \(P_T\), are fairly close to each other while the Laspeyres index \(P_L\) lies above these superlative indices and the Paasche index \(P_P\) lies below them. This is a typical empirical result.

11.21 Organizations that compile residential property price indices tend to use somewhat different formulas when aggregating over regions. A common form of aggregation is to use a *weighted* average of the regional price indices to form an overall index, using the sales weights of period 0 (or some average of sales weights that pertain to periods prior to period 0). Denote the share weighted index that uses the sales weights of period 0 by \(P_{w,s}\) and the share weighted index that uses the sales weights of period 1 by \(P_{w,c}\). The period 1 values \((\cdot)\) for the indices \(P_{w,s}\), \(P_{w,c}\) and the arithmetic average of \(P_{w,s}\) and \(P_{w,c}\), denoted by \(P_{w,s,c}\), are defined as follows:

\[
P_{w,s} = s'_s (p'_s / p'^1_s) + s'_c (p'_c / p'^1_c)\]

\[
P_{w,c} = s'_c (p'_c / p'^1_c) + s'_s (p'_s / p'^1_s)\]

\[
P_{w,s,c} = 0.5 P_{w,s} + 0.5 P_{w,c}\]

\[(\cdot)\] The period 0 values for all of the indices defined in this section are set equal to 1.
The above three indices are also listed in Table 11.3. It can be seen that P_0 is equal to P_1 and is about 0.26 percentage points above the Fisher index P_F in period 1, while P_0 is about 1.77 percentage points above P_F. This result is not unexpected; the indices P_0 and P_1 do not generally closely approximate superlative indices and so their use is not recommended.

* Fisher (1922) showed that P_0 defined by (11.5) is equal to the Laspeyres index P_L defined by (11.1). Fisher also attributed the index P_1 defined by (11.6) to Palgrave.

Table 11.3. Overall House Price Indices using Median Prices and Alternative Formulae to Aggregate over Regions A, B and C

<table>
<thead>
<tr>
<th>Period</th>
<th>P_F</th>
<th>P_T</th>
<th>P_L</th>
<th>P_P</th>
<th>P_0</th>
<th>P_1</th>
<th>P_G</th>
<th>P_{GP}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.00000</td>
<td>1.00000</td>
<td>1.00000</td>
<td>1.00000</td>
<td>1.00000</td>
<td>1.00000</td>
<td>1.00000</td>
<td>1.00000</td>
</tr>
<tr>
<td>1</td>
<td>1.02515</td>
<td>1.02425</td>
<td>1.02778</td>
<td>1.02253</td>
<td>1.02778</td>
<td>1.04280</td>
<td>1.03529</td>
<td>1.01590</td>
</tr>
</tbody>
</table>

Source: Authors’ calculations based on MLS® data for a Canadian city

11.22 Two additional indices are listed in Table 11.3: the geometric Laspeyres and Paasche price indices, P_G and P_{GP}. The period 1 values for these indices are defined as follows:

$$P_G = \exp\left[s_A^i \ln(p_A^i / p_A^0) + s_B^i \ln(p_B^i / p_B^0) + s_C^i \ln(p_C^i / p_C^0)\right]$$

$$P_{GP} = \exp\left[s_A^i \ln(p_A^i / p_A^0) + s_B^i \ln(p_B^i / p_B^0) + s_C^i \ln(p_C^i / p_C^0)\right]$$

Thus, the period 1 values for each of these two indices are equal to share weighted geometric averages of the regional price indices, p_A^i / p_A^0, p_B^i / p_B^0 and p_C^i / p_C^0, where P_G uses the regional share weights pertaining to period 0, s_A^0, s_B^0 and s_C^0, and P_{GP} uses the regional share weights pertaining to period 1, s_A^1, s_B^1 and s_C^1. From Table 11.3 it can be seen that the geometric Laspeyres index P_G is approximately 1 percentage point below the superlative indices P_F and P_T while the geometric Paasche index P_{GP} is approximately 1 percentage point above the superlative indices. (14)

Hence, the use of the geometric Laspeyres or Paasche formulae cannot be recommended when constructing aggregates of regional price indices; these formulae are unlikely to closely approximate a superlative index, which can readily be constructed using regional data on house price sales.

11.23 The above methods for aggregating over regional price indices assumed that median prices in each region correspond to houses of comparable quality over the two periods being compared. Now suppose that instead of using median prices in each region to represent constant quality house prices, it was decided to use mean prices in each region. Again, since it is desirable to have price times volume equal to expenditure in each period for each region, once it is decided to use mean prices as the constant quality a price concept, the corresponding volume should equal expenditures divided by price. Thus using the mean price in each region as a constant quality price for each time period leads to the data on regional expenditures (t_v), prices (t_p) and volumes (or implied quantities $t_p q_t / t_v = t_v$) that are listed in Table 11.4 below.

Table 11.4. Regional Expenditures, Prices and Volumes (Implicit Quantities) Using Mean Prices as the Regional Prices

<table>
<thead>
<tr>
<th>Period</th>
<th>v_A^0</th>
<th>v_B^0</th>
<th>v_C^0</th>
<th>P_A</th>
<th>P_B</th>
<th>P_C</th>
<th>q_A^0</th>
<th>q_B^0</th>
<th>q_C^0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1300</td>
<td>500</td>
<td>675</td>
<td>325</td>
<td>500</td>
<td>225</td>
<td>4</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>1725</td>
<td>400</td>
<td>825</td>
<td>345</td>
<td>400</td>
<td>275</td>
<td>5</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>

Source: Authors’ calculations based on MLS® data for a Canadian city

©International Monetary Fund. Not for Redistribution
11.24 Using means instead of medians as the constant quality price in each region changes the regional price indices. The mean-based period 1 regional price indices are equal to \(p_i^1 / p_i^0 = 345/325 = 1.06154 \), \(p_s^1 / p_s^0 = 400/500 = 0.80 \), and \(p_c^1 / p_c^0 = 275/225 = 1.2 \) for regions A, B and C respectively. Again, there are widely differing house price inflation rates in the three regions when mean prices are used in place of median prices.

11.25 Using means instead of medians, the various overall price indices defined by formulae (11.1) to (11.9) can be calculated. The following counterpart to Table 11.3 is obtained using these formulae applied to the data in Table 11.4.

Table 11.5. Overall House Price Indices using Mean Prices and Alternative Formulae to Aggregate over Regions A, B and C

<table>
<thead>
<tr>
<th>Period</th>
<th>(P_F)</th>
<th>(P_I)</th>
<th>(P_s)</th>
<th>(P_p)</th>
<th>(P_0)</th>
<th>(P_1)</th>
<th>(P_A)</th>
<th>(P_{A0})</th>
<th>(P_{A1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.00000</td>
<td>1.00000</td>
<td>1.00000</td>
<td>1.00000</td>
<td>1.00000</td>
<td>1.00000</td>
<td>1.00000</td>
<td>1.00000</td>
<td>1.00000</td>
</tr>
<tr>
<td>1</td>
<td>1.05305</td>
<td>1.05222</td>
<td>1.05253</td>
<td>1.05357</td>
<td>1.05253</td>
<td>1.07101</td>
<td>1.06177</td>
<td>1.04187</td>
<td>1.06267</td>
</tr>
</tbody>
</table>

Source: Authors’ calculations based on MLS® data for a Canadian city

It can be seen that the use of mean prices instead of median prices for each region has led to very different indices; the superlative indices \(P_F \) and \(P_I \) are now about 3 percentage points higher in period 1. However, the use of mean prices has led to Laspeyres and Paasche indices, \(P_s \) and \(P_p \), that are fairly close to their superlative counterparts. Since the base period share weighted index \(P_0 \) is numerically equal to \(P_s \), \(P_F \) is also fairly close to \(P_s \) and \(P_p \). However, the other two shared weighted indices, \(P_A \) and \(P_{A0} \), are well above the superlative indices. Finally, the Geometric Laspeyres index, \(P_{A} \), is well below \(P_s \) and the Geometric Paasche index, \(P_{A0} \), is well above \(P_p \). In any case, the use of mean prices in the housing context is not recommended since the mean price of a house in a region is unlikely to hold the quality of the houses constant over time.

Hedonic Regression Methods

11.26 Chapter 5 discusses the use of hedonic techniques for calculating house price indices. There are various ways of applying this technique when calculating price indices in general and residential property price indices in particular. The handbook presents three variants of the hedonic approach. These are: the time dummy variable method, the characteristics prices (or imputation) method, and the stratified hedonic method. Compared to the other approaches, all these hedonic methods are typically more data intensive, often requiring more information compared to the other approaches for constructing constant quality house price indices. This is because, in addition to data on prices, some pertinent characteristics (both structural and environmental) for each observation that is used in the regression are needed with hedonic methods. In principle, the more detailed the set of characteristics is and the larger the sample of housing units, the more reliable and accurate will be the resulting price index. (15)

11.27 A hedonic model expresses the price of a good as a function of its price-determining characteristics (or attributes). Chapter 5 covered two frequently used functional forms, which are the linear model and the logarithmic-linear (or semi-log) model, although other options (e.g., the Box-Cox technique) are often also treated in the literature, they are not covered here. The semi-log form is convenient because the interpretation of the regression coefficients is straightforward: once multiplied by 100, the coefficients can be interpreted as the percent change in the price of the house that results from a unit change in the explanatory variable.

11.28 To illustrate as plainly as possible how the various hedonic house price indices are constructed, the extensive version of the dataset used for calculating the mean and median prices above will also be consulted for the following examples. To simplify the presentation, the number of price-determining characteristics will be limited to four (continuous) variables. These are: lot size (land), number of bedrooms (rooms), number of bathrooms (bath), and age (age). The initial results for a regression using OLS with a semi-log functional form for a single year (2008) are summarised in Table 11.6.

(15) Although most hedonic regressions on house prices in the literature will often use many more explanatory variables, some studies and the examples in Chapter 5 show that reliable hedonic price indices can be obtained with as few as four independent variables.
Empirical Examples

Table 11.6. Log-linear Regression Results for a Simple Example

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>20.0634692</td>
<td>4</td>
<td>5.0158673</td>
</tr>
<tr>
<td>Residual</td>
<td>25.4293063</td>
<td>791</td>
<td>.032148301</td>
</tr>
<tr>
<td>Total</td>
<td>45.4927755</td>
<td>795</td>
<td>.057223617</td>
</tr>
</tbody>
</table>

Number of obs = 796
F(4, 791) = 156.02
Prob > F = 0.0000
R-squared = 0.4410
Adj R-squared = 0.4382
Root MSE = .1793

| lprice | Coef. | Std. Err. | t | P>|t| | [95% Conf. Interval] |
|--------|--------|-----------|-------|-------|----------------------|
| rooms | .1156791 | .0098159 | 11.78 | 0.000 | .0964108 -.1349473 |
| bath | .0999522 | .0095996 | 10.41 | 0.000 | .0811086 -.1187958 |
| age | -.002561 | .0004173 | -6.14 | 0.000 | -.0033801 -.001742 |
| land | 9.39e-06 | 1.28e-06 | 7.31 | 0.000 | 6.87e-06 .0000119 |
| _cons | 12.0647 | .0383342 | 314.72| 0.000 | 11.98945 12.13995 |

Source: Authors’ calculations based on MLS® data for a Canadian city

11.29 From the regression on a sample of 796 price observations it is found that all four explanatory variables have the expected sign and are significantly different from 0 (using a t-test). The adjusted R-squared (or coefficient of determination) is 44%, i.e., variations in lot size, the number of bedrooms, bathrooms, and age account for 44% of house price variability. By adding more explanatory variables to the regression, the R-squared would increase. In fact, by adding three independent variables (the presence of a fireplace, the presence of a garage, and the age squared to account for the non-linearity associated with this variable) improved the adjusted R-squared to 54%.

11.30 The regression results can be interpreted as follows:

- An extra square foot of lot size will increase the price of the house by 0.000939%, ceteris paribus.
- Each additional bedroom adds 11.6% to the price of a house, ceteris paribus.
- A house with an extra bathroom cost almost 10% more than a house without the extra bathroom, ceteris paribus.
- By adding one year to the house, its price declines (or the housing unit depreciates) by 0.2%, ceteris paribus.

The Latin locution ceteris paribus means “all variables other than the ones being studied are assumed to be constant”. Turning to the variable “number of bedrooms” as an example, it cannot be concluded that houses with more bedrooms will always cost more; other factors are at play that can affect the price of the house such as its location and age, and overall quality of its construction. What is meant by qualifying the statement by ceteris paribus is that when houses vary only in terms of the number of bedrooms for instance (i.e., they are comparable in all other respects) then those with more bedrooms will cost more.

11.31 What follows are simplified examples of the various methods, as discussed in Chapter 5, for calculating hedonic price indices. The time dummy variable method is presented first. All examples use OLS regressions.

The Time Dummy Variable Method

11.32 The time dummy variable method is based on the estimation of a logarithmic-linear hedonic regression model where the data are pooled across all periods. The model is given by equation (6.5) and is repeated here for convenience:

\[
\ln p_i^t = \beta_0 + \sum_{r=1}^{R} \delta^r D_i^r + \sum_{k=1}^{K} \beta_k z_{ik} + \epsilon_i^t \tag{11.10}
\]

where \(D_i^r \) is dummy variable which is equal to one if the observation comes from period \(r \) \((r = 1,...,T)\) and is zero otherwise. The time dummy variable for the base period 0 – i.e., the start period from which the subsequent price changes will be compared – is left out to avoid perfect collinearity of all dummies with the intercept term \(\beta_0 \), known as the ‘dummy trap’. With the time dummy variable approach the base period and the subsequent comparison periods, \(t = 1,...,T \), are the same units of time, i.e., a month, a quarter, or a year, depending on the particular circumstances such as the needs of the users or data availability.

11.33 The exponential or anti-logarithm of the estimated regression coefficient \(\hat{\delta}^r \) measures the percent change in ‘constant quality’ property prices between the base period and period \(t \). To understand why \(\exp(\hat{\delta}^r) \) is a measure of quality adjusted, pure price change, the following steps have been worked out. The predicted logarithm of price in period 0 for property \(i \), given its base period characteristics, \(z_{ik} \) \((k = 1,...,K)\), is

\[\hat{\ln p_i^0} = \beta_0 + \sum_{k=1}^{K} \hat{\beta}_k z_{ik} \]

©International Monetary Fund. Not for Redistribution
Empirical Examples

Handbook on Residential Property Prices Indices (RPPIs)

In period 1, the predicted logarithm of price must be evaluated at the property’s base period characteristics, because quality should be held constant, hence

\[\ln \hat{p}^*_i = \hat{\beta}_0 + \sum_{k=1}^{K} \hat{\beta}_k z_{ik} \]

(11.11)

Taking the differences between the estimates for both periods yields

\[\ln \hat{p}^*_i - \ln \hat{p}^*_1 = \ln(\hat{p}^*_i / \hat{p}^*_1) \]

\[= \hat{\delta} \]

(11.13)

Expression (11.13) does not depend on \(n \). That is, the result holds for all houses in the sample. As pointed out in Berndt (1991), the estimate of \(\hat{\delta} \) can be interpreted as the change in the logarithm of price due to the passage of time, holding all other variables constant. Taking the anti-log of \(\hat{\delta} \) gives the estimated price index for period 1:

\[P_{1}^{m} = \exp(\hat{\delta}) \]

(11.14)

A similar exercise can be done for all other periods. The time dummy price index going from the base period to a comparison period \(t \) (\(0 < t \leq T \)) therefore is

\[P_{t}^{m} = \exp(\hat{\delta}^t) \]

(11.15)

Obviously, the time dummy hedonic index for the base period is equal to 1.

11.34 The following example illustrates the procedure for calculating a time dummy price index. Suppose that detailed information about the houses that were transacted over two years (\(t = 2006 \) to \(t = 2007 \)) is available. Using the same information as in the basic data set above, the data for all periods are combined into the following pooled regression equation:

\[\ln p'_i = \beta_0 + \beta_1 \text{Lotsize}_i + \beta_2 \text{Bedroom}_i + \beta_3 \text{Bathroom}_i + \beta_4 \text{Age}_i + \delta_i' \text{D}^i + \epsilon'_i \]

(11.16)

The left-hand side of equation (11.16) has the logarithm of the price of house \(i \) in year \(t \) (2006 or 2007) as the dependent variable. The right-hand side has the same explanatory variables (except for the time dummy variables) that one would find in a one period hedonic regression. In this particular case the explanatory variables are: lot size, number of bedrooms, number of bathrooms, and age; the respective parameters range from \(\beta_1 \) to \(\beta_4 \). Since this is a pooled regression, the estimated parameters (or regression coefficients) will be constrained over the years for which data are used in the regression. The error term \(\epsilon'_i \) indicates if an observed value is above or below the regression line. Also on right-hand side of the equation is the intercept term, \(\beta_0 \).

11.35 The regression results using the basic data set are listed in Table 11.7. The coefficient of interest is the one associated with year 2007, \(\delta_7 \). Its value is 0.0781548. This coefficient is then transformed to arrive at an estimate of the price index (or the per cent change in prices) for houses between years 2006 and 2007. This transformation consists in taking the anti-logarithm of coefficient \(\delta_7 \):

\[\exp(0.0781548) = 1.08129 \]

Thus, the per cent change in house prices between years 2006 and 2007, holding constant all the characteristics of the house, is 8.1%.

Note that the mean and the median yielded increases of 10.1% and 9.2%, respectively, for this same period.

11.36 If a third period (year 2008) is added, then the hedonic regression equation becomes:

\[\ln p'_i = \beta_0 + \beta_1 \text{Lotsize}_i + \beta_2 \text{Bedroom}_i + \beta_3 \text{Bathroom}_i + \beta_4 \text{Age}_i + \delta_i' \text{D}^i + \delta_i'' \text{D}^{ii} + \epsilon'_i \]

(11.17)

Table 11.8 contains the regression output. The value of the time dummy coefficient for year 2008 is 0.1332734. Taking its anti-logarithm generates a value of \(\exp(0.1332734) = 1.14 \), showing an increase in the constant quality house price index of 14% between the base year, 2006 and the most recent year, 2008. By contrast, the price progression over the same period generated by the mean and median was respectively 16% and 17%.
11.37 This technique can be extended to more than three periods as more periods become available. This consists in pooling more periods of data and adding additional time dummy variables. However, multi-period pooled regressions are not necessarily ideal for constructing a time series since adding new periods of data will likely modify the results from the previous periods. For instance, in the above example, when year 2008 is added to the previously pooled regression, the coefficient for year 2007 becomes 0.0781257, which in this specific case is only slightly different compared to the estimate obtained with the regression of Table 11.7, where the corresponding coefficient was 0.0781548. Moreover, the stability of the coefficients in a pooled regression can become an issue as the number of periods expands.

11.38 An alternative approach mentioned in Chapter 5 is to use the adjacent-period time dummy variable technique. If the hedonic regression is based on two consecutive periods t and $t+1$, the hedonic relationship becomes:

$$\ln p'_{t} = \beta_{s} + \delta^{i} D_{s}^{i} + \sum_{j=1}^{k} \beta_{j} z_{t}^{j} + \epsilon_{t}'$$ \hspace{1cm} (11.18)

In the context of the three periods of data used in the above examples, a hedonic regression is first run for periods 0 and 1, and then a second regression is run for periods 1 and 2 using the four characteristics. The regression output for the first adjacent period regression is obviously the same as in Table 11.7, and the resulting period-to-period price index yields an estimate of 108.1. Table 11.9 shows the regression output for adjacent years 2007 and 2008.
Table 11.9. Results from a Pooled Regression for Years 2007 and 2008

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>45.441478</td>
<td>5</td>
<td>9.0882956</td>
</tr>
<tr>
<td>Residual</td>
<td>55.6172267</td>
<td>1664</td>
<td>.033423814</td>
</tr>
<tr>
<td>Total</td>
<td>101.058705</td>
<td>1669</td>
<td>.060550452</td>
</tr>
</tbody>
</table>

| lprice | Coef. | Std. Err. | t | P>|t| | [95% Conf. Interval] |
|--------|-------|-----------|-------|------|-----------------|
| rooms | .1041401 | .0068861 | 15.12 | 0.000 | .0906337 , .1176465 |
| bath | .1070142 | .0068881 | 15.54 | 0.000 | .093504 , .1205244 |
| age | -.0026926 | .003045 | -8.84 | 0.000 | -.0032899 , -.0020953 |
| land | .0000117 | 9.42e-07 | 12.42 | 0.000 | 9.85e-06 , .000135 |
| d2008 | .0555370 | .0089625 | 6.20 | 0.000 | .073116 , .037958 |
| cons | 12.07482 | .026871 | 449.36| 0.000 | 12.02212 , 12.12753 |

Source: Authors’ calculations based on MLS® data for a Canadian city

11.39 The constant quality price index is calculated as the antilogarithm of the coefficient for year 2008 (0.0555370), so that the index becomes \(\exp(0.0555370) = 1.057 \). Recall that this is the price change from period 2007, not from the base period 2006. From these results, a time series can be constructed by chaining the two period-to-period indices (starting with the value 1 for the base period): \(P^{2007}_{2006} = 1.081 \); \(P^{2008}_{2007} = 1.081 \times 1.057 = 1.143 \). This result differs only slightly from the full-period pooled regression (see Table 11.8) where we estimated a price change of 14.0% over the entire period. Now, with chaining adjacent period time dummy indices, the estimated price change is 14.3%.

Characteristics Prices or Imputation Method

11.40 The next hedonic regression approach presented in Chapter 5 is the characteristics prices or hedonic imputation method, henceforth simply the characteristics method. Applying this method to the same data as previously used, a quality-adjusted price index is estimated. For ease of presentation and interpretation, a linear model will be regressed to generate the results.\(^{(14)}\)

11.41 The characteristics prices approach uses the implicit prices of the characteristics of the model (the regression coefficients) as the basis for constructing the price index, in a similar way as in a typical price index formula, but where the regression coefficients assume the role of the prices and the quantities are the quantities are the number of units of characteristics. Thus, the hedonic equation is estimated for each time period separately. The linear hedonic models for the base period 0 (2006) and for period 1 (2007) are

\[
p^i = \beta_i^0 + \beta_i^1 \text{Lotsize}_i + \beta_i^2 \text{Bedroom}_i + \beta_i^3 \text{Bathroom}_i + \beta_i^4 \text{Age}_i + \epsilon_i^0
\]

\[
p^j = \beta_j^0 + \beta_j^1 \text{Lotsize}_j + \beta_j^2 \text{Bedroom}_j + \beta_j^3 \text{Bathroom}_j + \beta_j^4 \text{Age}_j + \epsilon_j^0
\]

11.42 Estimating these equations on the sample data from 2006 and 2007, respectively, using OLS regression, generates the results shown in Tables 11.10 and 11.11. In this example, the implicit price of an extra bedroom in 2006 is $42329 while each additional bathroom will add $43190 to the price of the house. The results for 2007 in this highly simplified example are understandably different from those for 2006: an additional bedroom now seems to increase the price by $35147, while the price of an extra bathroom is now estimated to be $43463.\(^{(17)}\)

\(^{(14)}\) Note that the coefficients for the number of bedrooms are somewhat volatile between both years. This is to be expected because hedonic regressions are often characterized by the presence of multicollinearity between these two predictor variables. It should be stressed however that multicollinearity does not in itself affect the accuracy of the overall index. This phenomenon is only an issue if an accurate monetary value is needed for the value of an additional bedroom and/or for an additional bathroom, such as would be the case with a property assessment exercise. It should also be added that for the purpose of this simplified exercise, the sample size is relatively small. This can also explain why sometimes the results are not quite as robust as is often the case with larger samples.

\(^{(17)}\) There is nothing to prevent however the use of a semi-log or log functional form. Both can be used with this hedonic approach.
11.43 The next step is to compute a hedonic price index from the regression results. A price index for 2007 compared to period 2006 can, for example, be expressed as

\[p^{2007} = \frac{\hat{\beta}_0 + \hat{\beta}_1 x_{i1} + \hat{\beta}_2 x_{i2} + \hat{\beta}_3 x_{i3} + \hat{\beta}_4 x_{i4}}{\hat{\beta}_0 + \hat{\beta}_1 x_{i1} + \hat{\beta}_2 x_{i2} + \hat{\beta}_3 x_{i3} + \hat{\beta}_4 x_{i4}} \]

where \(x_{i1} \) is the sample mean value of the \(k \)-th characteristic in the base period; \(\bar{x}_{i1} = \frac{1}{n} \sum_{i=1}^{n} x_{i1} \). Price index compilers will recognize that the index described by (11.21) is a Laspeyres-type price index: the estimated characteristics prices in period 0 (2006) and period 1 (2007), \(\hat{\beta}_0 \) and \(\hat{\beta}_0 \), are weighted by the average base period quantities of the characteristics. Put differently, the average base period quantities for all characteristics are valued at their implicit prices in the base period and in the current period. Table 11.12 lists the average sample values for the characteristics in this example. Using these values and the coefficients from Tables 11.10 and 11.11, the Laspeyres-type hedonic index between the base year (2006) and 2007 is computed as

\[p^{2007} = \frac{79248 + (35147 \times 3.63) + (43463 \times 2.76) + 98333 + (24329 \times 3.63) + (43190 \times 2.76) + (-1059 \times 23.89) + (5.829323 \times 6719) + (-1083 \times 23.89) + (5.168582 \times 6719)}{72520} = 1.082 \]

The 8.2% increase in prices so obtained compares, in this particular case, quite closely with the 8.1% obtained using the time-dummy approach from Table 11.7.
Table 11.12. Mean Values of the Characteristics for the Base Period (2006)

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>Std. Err.</th>
<th>[95% Conf. Interval]</th>
</tr>
</thead>
<tbody>
<tr>
<td>rooms</td>
<td>3.633094</td>
<td>.0244034</td>
<td>3.585194, 3.680993</td>
</tr>
<tr>
<td>bath</td>
<td>2.767386</td>
<td>.0269044</td>
<td>2.714578, 2.820195</td>
</tr>
<tr>
<td>age</td>
<td>23.88969</td>
<td>.5693338</td>
<td>22.77219, 25.00719</td>
</tr>
<tr>
<td>land</td>
<td>6719.492</td>
<td>184.8605</td>
<td>6356.644, 7082.339</td>
</tr>
</tbody>
</table>

Source: Authors’ calculations based on MLS® data for a Canadian city.

11.44 For subsequent periods, the compiler has a decision to make. He or she can use the same base year quantities to calculate the subsequent indices using the Laspeyres formula but replacing the implicit prices in the numerator with the relevant ones. Alternatively, quantities (mean characteristics) from the previous period could be used to generate period-to-period price indices. These bilateral indices would then be chained to create a continuous time series of linked indices. Other options are also available, and these are discussed in Chapter 5, but the mechanics of constructing the index remain essentially the same as presented here.

The Repeat Sales Method

11.45 The most significant problem with using (non-stratified) median or mean transaction prices to measure trends in houses prices is that the variation in the composition of the sample of properties sold from period to period is not always accurately accounted for. This issue can be partially circumvented by constructing an RPPI based on the repeat sales method, which was discussed in Chapter 6. In fact, one very popular house price index that is closely scrutinized in the U.S., the Case-Shiller house price index, is based on the repeat sales methodology.

11.46 The strategy for constructing a repeat sales house price index is quite straightforward. It consists in comparing the change in the price of identical properties that have sold at two points in time. In other words, it uses matched (or like-for-like) sampling as the basis for selecting the units that will be used in the calculation of the index. For the repeat sales approach to be tractable, one must have access to a large database of transactions covering a fairly long period. Otherwise the data needs are relatively modest: with the basic repeat sales method, only information on the dwellings address (or another location identifier) is required in order to identify which units have sold repeatedly, in addition of course to the selling price and the sale date. (18)

11.47 A simple example can illustrate the application of the repeat sales methodology. (19) Assuming the objective is to estimate an annual index of price change between 2008 and 2010, Table 11.13 shows data for a small number of transactions. Property A sold in 2008 for $100,000 and sold again in 2009 for $120,000; property B is sold in 2008 for $175,000 and sold again in 2010 for $220,000; property C sold in 2009 for $180,000 and sold again in 2010 at the same price.

(18) One assumption is that the quality of the house has not changed over the period between the two sales. If information about the features of the property is available to the compiler, then it is possible to exclude from the calculation those observations that have undergone significant changes over time and that are likely to affect the price and thus distort the index. Furthermore, given that high turnover is often a sign that certain undesirable features for that particular property may be at play so that these observations can also be excluded from the calculation. It should also be mentioned that repeat-sales indices are not always strictly constant quality price indices since houses are often subject to some loss in value over time as a result of depreciation. Consequently, repeat-sales price indices typically underestimate true house price inflation, unless some corrective adjustment is made to the estimates. If the purpose of the index is to act as a short- to medium-term indicator of house prices, then the issue of depreciation which the repeat-sales approach does not handle adequately can perhaps be set aside.

Table 11.13. Repeat Sales Data

<table>
<thead>
<tr>
<th></th>
<th>2008</th>
<th>2009</th>
<th>2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>Property A</td>
<td>$100,000</td>
<td>$120,000</td>
<td>No sale</td>
</tr>
<tr>
<td>Property B</td>
<td>$175,000</td>
<td>No sale</td>
<td>$220,000</td>
</tr>
<tr>
<td>Property C</td>
<td>No sale</td>
<td>$180,000</td>
<td>$180,000</td>
</tr>
<tr>
<td>Average</td>
<td>$137,500</td>
<td>$150,000</td>
<td>$200,000</td>
</tr>
</tbody>
</table>
As a first step, the price change over the 2008 to 2010 period is estimated using the mean of prices approach. The annual average prices from 2008 to 2010 are respectively $137,000, $150,000, and $200,000. The corresponding year-to-year changes in average prices are 9.1% and 33.3% for the periods 2009/2008 and 2010/2009.

11.48 These results are now compared with those obtained if the repeat sales technique is used. Let \(P \) be the price relative of the house between the second and first sale for each completed transaction \(^{(20)}\) from 2008 to 2010. The logarithm of \(P \) will serve as the dependent variable in a repeat sales regression. Three repeated sales are identified in Table 11.13 for the period 2008 to 2010. The first repeat sale, for property A, has a \(P \) value of 1.200 (i.e., the price relative between its sale prices in 2009 and 2008); the second repeat sale, which occurs for property B, has a \(P \) value of 1.257 (the price relative between its selling prices in 2010 and 2008); property C is the third

\[(^1)\text{Geltner and Pollakowski (2006) use the term ‘round trip’}.

Table 11.14. Dummy Variables for Repeat Sales

<table>
<thead>
<tr>
<th></th>
<th>(P)</th>
<th>D2009</th>
<th>D2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>Property A</td>
<td>1.200</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Property B</td>
<td>1.257</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Property C</td>
<td>1.000</td>
<td>-1</td>
<td>1</td>
</tr>
</tbody>
</table>

11.50 Given these repeat sales data, the regression equation – which has no intercept term – can be expressed as (see also equation (6.3)):

\[
\ln P_t = \gamma^{2009} D_{2009} + \gamma^{2010} D_{2010} + \varepsilon_t
\]

(11.22)

where \(\varepsilon_t \) is an error term ("white noise"). The anti-logarithm of the estimated parameters, i.e., \(\exp(\gamma^{2009}) \) and \(\exp(\gamma^{2010}) \), will represent the price indices of the housing unit for each period when compared to the base period 2008. Using Ordinary Least Squares (OLS) to estimate equation (11.22) on the data from Table 11.14, the resulting repeat sales price indices are 1.219 and 1.238 for 2009 and 2010, respectively. The year-to-year growth rates of 21.9% and 23.8% for this example are quite different from those found with the simple average approach, which were 9.1% and 33.3%. \(^{(21)}\)

11.51 The simple repeat sales model can be improved. One way of accomplishing this is by reducing the statistical noise in the index series generated. As pointed out by Geltner and Pollakowski (2006), the source of the estimation error (or noise) in property price indices is explained by the fact that the observed transaction prices are randomly distributed around the "true" but unobservable market values. The authors add that this noise is present in any house price index, regardless of how the index is constructed. To mitigate the effects of the noise the sample of repeated sales can be expanded, data availability permitting.

11.52 As previously pointed out, an OLS regression can be used to obtain the set of price changes. The Bailey, Muth, and Nourse (1963) model is a classic example of the OLS repeat sales methodology using the technique outlined above. However, subsequent research has suggested that the basic OLS repeat sales method may be improved by applying a weighted least squares (WLS) technique. In a nutshell, the method consists in giving more weight in the regression to the observations that are deemed more accurate. In the context of the repeat sales method, giving less weight to properties for which a long time span has elapsed between sales and vice versa corrects for this inherent problem, better known as the heteroskedasticity problem.
11.53 Case and Shiller (1987) suggest the following three-stage approach:

1. Estimate model (11.22) by OLS regression and retain the vector of regression residuals.
2. Run an OLS regression of the squared residuals on a constant term and the time interval between sales.
3. Run an OLS regression of model (11.22) but where each observation is divided through by the square root of the fitted value from the second-stage regression.

The third stage is a weighted least squares regression of model (11.22) that accounts for the presumed heteroskedasticity.

Table 11.15. Unweighted Repeat Sales Regression

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>32.5127473</td>
<td>6</td>
<td>5.41879122</td>
</tr>
<tr>
<td>Residual</td>
<td>16.8531146</td>
<td>1180</td>
<td>.014282301</td>
</tr>
<tr>
<td>Total</td>
<td>49.365862</td>
<td>1186</td>
<td>.04162383</td>
</tr>
</tbody>
</table>

| diflnprice | Coef. | Std. Err. | t | P>|t| | [95% Conf. Interval] |
|------------|-------|-----------|------|------|-------------------|
| dy2003 | .0613539 | .0086332 | 7.11 | 0.000 | .0444157 | .0782921 |
| dy2004 | .1198942 | .0082047 | 14.61| 0.000 | .1037969 | .1359915 |
| dy2005 | .1431862 | .008343 | 17.16| 0.000 | .1268173 | .159555 |
| dy2006 | .1845885 | .0084578 | 21.82| 0.000 | .1679945 | .2011826 |
| dy2007 | .2658241 | .0083474 | 31.85| 0.000 | .2494468 | .2822015 |
| dy2008 | .3438869 | .0087587 | 39.26| 0.000 | .3267025 | .3610713 |

Source: Authors’ calculations based on MLS® data for a Canadian city

Table 11.16. Weighted Repeat Sales Regression

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>2098.21619</td>
<td>6</td>
<td>349.702699</td>
</tr>
<tr>
<td>Residual</td>
<td>1182.72363</td>
<td>1180</td>
<td>1.00230816</td>
</tr>
<tr>
<td>Total</td>
<td>3280.93982</td>
<td>1186</td>
<td>2.76639108</td>
</tr>
</tbody>
</table>

| ndifprice | Coef. | Std. Err. | t | P>|t| | [95% Conf. Interval] |
|-----------|-------|-----------|------|------|-------------------|
| ndy2003 | .0635307 | .0085609 | 7.42 | 0.000 | .0467345 | .0803269 |
| ndy2004 | .1211754 | .0081162 | 14.93| 0.000 | .1052516 | .1370992 |
| ndy2005 | .1437457 | .0082962 | 17.33| 0.000 | .1274688 | .1600226 |
| ndy2006 | .1864151 | .0084621 | 22.03| 0.000 | .1698127 | .2030175 |
| ndy2007 | .2689894 | .0084844 | 31.70| 0.000 | .2523433 | .2856356 |
| ndy2008 | .3491619 | .0091085 | 38.33| 0.000 | .3312913 | .3670325 |

Source: Authors’ calculations based on MLS® data for a Canadian city

11.54 Moving to the larger and more realistic set of data on single-family houses that were previously used for most of the previous examples of this chapter, two versions of the repeat sales method are illustrated. The results are first computed for the unweighted repeat sales regression approach and are presented in Table 11.15. Table 11.16 presents the results for the weighted version of the repeat sales regression. Note that for this particular set of data, all the coefficients are significantly different from 0 and that no intercept is used in the regressions for the repeat sales approach. One often cited drawback of the repeat sales method is that it is wasteful of data. The current exercise confirms this. Of the 5787 observations that were in the database at the start, only 1186 (or about 20%) are found to be units that sold more than once during the 6 or so years.

11.55 Similar to the time dummy hedonic model presented earlier, the corresponding price indices are obtained by taking the antilogarithm of the estimated coefficient as...
Empirical Examples

the dependent variable is the logarithm of the price. For example, the regression for the unweighted repeat sales approach yields a coefficient of 0.2658241 for 2007; taking the antilogarithm yields $\exp(0.2658241) = 1.3045$ (or 130.5 once rounded and multiplied by 100). The indices for the entire 2002 to 2008 period are shown in Table 11.17.

Table 11.17. Repeat Sales Price Indices (2002 = 100)

<table>
<thead>
<tr>
<th>Year</th>
<th>Unweighted</th>
<th>Per cent change</th>
<th>Weighted</th>
<th>Per cent change</th>
</tr>
</thead>
<tbody>
<tr>
<td>2002</td>
<td>100.0</td>
<td></td>
<td>100.0</td>
<td></td>
</tr>
<tr>
<td>2003</td>
<td>106.3</td>
<td>6.3</td>
<td>106.6</td>
<td>6.6</td>
</tr>
<tr>
<td>2004</td>
<td>112.7</td>
<td>6.0</td>
<td>112.9</td>
<td>5.9</td>
</tr>
<tr>
<td>2005</td>
<td>115.4</td>
<td>2.4</td>
<td>115.5</td>
<td>2.3</td>
</tr>
<tr>
<td>2006</td>
<td>120.3</td>
<td>4.2</td>
<td>120.5</td>
<td>4.4</td>
</tr>
<tr>
<td>2007</td>
<td>130.5</td>
<td>8.5</td>
<td>130.9</td>
<td>8.6</td>
</tr>
<tr>
<td>2008</td>
<td>141.0</td>
<td>8.1</td>
<td>141.8</td>
<td>8.3</td>
</tr>
</tbody>
</table>

Source: Authors’ calculations based on MLS® data for a Canadian city

Note that the indices are quite similar, regardless whether the unweighted or weighted repeat sales versions are used. This is a feature of this particular dataset and may not necessarily hold true for house price indices estimated from other sources.

Table 11.18 summaries the index results using the various methods presented here using the extended dataset for year 2007. The simple mean shows the largest increase of all the estimated indices at 10.1% with the median being slightly lower at 9.2%. The hedonic indices increased by 5.7% and 5.9% for the adjacent year pooled and characteristics prices approaches, respectively (calculation not shown above). By contrast, the repeat sales weighted and unweighted indices increased by 8.5% and 8.6%, respectively. Although the sample size is somewhat small to make any generalisation, one important observation is noteworthy. The non-quality adjusted indicators, i.e., the mean and median, generate the highest growth rates, while the hedonic methods generate the smallest. The repeat sales approaches, although they control for many potential aspects of quality, do not control for age. Therefore, it is not so surprising that the price increases obtained with this approach are larger than those obtained with the hedonic approaches.

Table 11.18. Growth Rates in Percent for the Various House Price Indices (2007)

<table>
<thead>
<tr>
<th>Mean</th>
<th>Median</th>
<th>Pooled hedonics</th>
<th>Characteristics hedonics</th>
<th>Repeat sales unweighted</th>
<th>Repeat sales weighted</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.1</td>
<td>9.2</td>
<td>5.7</td>
<td>5.9</td>
<td>8.5</td>
<td>8.6</td>
</tr>
</tbody>
</table>

Source: Authors’ calculations based on MLS® data for a Canadian city
Recommendations
12.1 This handbook provides detailed and comprehensive information on the compilation of residential property price indices (RPPIs). It provides an overview of the conceptual and theoretical issues that arise, explains the different user needs for such indices and gives advice on how to deal with the practical problems that statistical offices are confronted with in the construction of such indices. Earlier chapters cover all relevant topics including: a description of the different practices currently in use; advice on the alternative methodologies available to the compiler; and the advantages and disadvantages of each alternative. The purpose of this chapter is to draw together all this information and make recommendations on best practice for compiling residential property price indices, including how to improve international comparability. The recommendations necessarily take into account the different situations countries are confronted with in terms of data availability and therefore cannot be too prescriptive.

12.2 Users of RPPIs are also catered for. The handbook provides information not only on the different methods that are and can be deployed in compiling such indices, but also on the statistical limitations of what is being measured. Users will want to bear the latter in mind so that the results of an index can be interpreted correctly. Any set of recommendations has to start with an understanding of the basic concept underlying the target index, in other words what a residential property price index is trying to measure. This will, of course, depend on user needs and the purpose of the index.

12.3 The recommendations given below follow the same order as Chapters 3 to 8. Chapter 3 describes the main elements of a conceptual framework for RPPIs, and Chapters 4 to 8 describe the main statistical methods that can be used in constructing such indices. The different methods essentially relate to alternative solutions to the problem of quality change, that is, how to adjust an RPPI for changes in the quality mix of the properties sold and for quality changes (the net effect of renovations, extensions and depreciation) of the individual dwellings.

Conceptual Issues

Target and Conceptual Basis

12.4 In principle, the target index, in other words the type of index to be compiled, will depend on its purpose. The System of National Accounts 2008 should be used as the conceptual framework for RPPIs.

Weighting

12.5 A price index which is required to measure the wealth associated with the ownership of residential property should be stock-weighted. A stock-weighted index is also appropriate for a financial stability indicator, in particular for an index which is being used to identify property price bubbles.

12.6 A price index which is required for measuring the real output of the residential real estate construction industry should be sales-weighted. A sales-weighted index is also appropriate for a consumer price index (CPI) that follows an acquisitions approach.

Index Scope

12.7 A price index which is required to measure the wealth associated with the ownership of residential property should cover all residential property, that is, both existing properties and properties which have been recently built. (1) This is also the case for an index used as a financial stability indicator.

12.8 A price index which is required for measuring real investment in the residential real estate industry should cover sales of new property. (2) The construction part of new housing produced is part of gross investment. The cost of the land, apart from the value of any improvements made to this element, should be excluded for this purpose. However, as was explained in Chapter 3, a price index for the sales of both new and existing houses is required in order to construct real output measures for the activities of real estate agents in selling new and existing houses to purchasers. The scope of the index for this application should cover both the structure and land values of the residential property sales.

12.9 A price index restricted to new properties is also appropriate when a residential property price index is an input into a CPI for the measurement of owner-occupier housing costs on a net-acquisition cost basis, that is, where the CPI covers the cost of acquiring properties which are new to the owner-occupier housing market. This approach, one of a number of alternatives as was explained in Chapter 3, treats the purchase of a dwelling exactly like the purchases of any other consumption good. (3)

Constant Quality

12.10 Regardless of the different uses of the index, the purpose of a residential property price index is to compare

(1) This includes conversions of existing property, for example where a warehouse has been converted into flats or an existing property has been sub-divided.

(2) Renovations to existing dwelling units are also part of residential construction investment.

(3) The argument in favour of the net acquisition approach is that it is the closest to the "acquisition" approach which has traditionally been adopted for other parts of a CPI and is most appropriate for a CPI being used as a general indicator of current economic conditions. But the method can draw criticism from those who require a CPI as a compensation index, as neither the weight nor the price indicator properly reflect the shelter costs of owner-occupiers. For instance, a rise in interest rates would not be reflected in a net acquisition index. See CPI Manual (2004) and the Practical Guide to Producing Consumer Price Indices (United Nations, 2009).
the values of the sales or of the stock of residential property between two time periods after allowing for changes in the attributes of the properties. For this purpose it is necessary to decompose price changes into those associated with changes in attributes and the residual which relates to the underlying “pure price” change.

12.11 A constant quality price index is appropriate for both a stock and sales-weighted price index. There are a number of practical methodologies which can be used to construct such an index. Recommendations on which of the available methods should be used in which circumstances are provided below.

Decomposition between the Building and Land Components

12.12 A decomposition of the RPPI in structures and land components may be required, particularly if a country’s balance sheet estimates of national wealth in the National Accounts make this distinction. Such decomposition may also be necessary when a residential property price index is an input into a CPI for the measurement of owner-occupier housing using the net-acquisition approach.

Statistical Methods for Compiling Constant Quality Indices

12.13 The methods adopted by statistical agencies to construct constant-quality RPPIs vary among countries and are dictated in large part by the availability of data generated by the processes involved in buying and selling a property. The challenges of compiling constant-quality residential price indices can be summarized by the following three factors:

- Residential properties are notoriously heterogeneous. No two properties are identical.
- Prices are often negotiated. The (asking) price of a property is not fixed and can change throughout the transaction process until the price is finalised. This means that a property’s market value can only be known with certainty after it has been sold. (*)
- Property sales are infrequent. In many countries, less than ten per cent of the housing stock changes hands every year, which means that a particular house is likely to be resold approximately once every ten years.

12.14 The different methods of index construction used by a statistical agency reflect the differing solutions used to meet the above challenges. Four methods have been studied in depth in this handbook: stratification or “mix-adjustment”, hedonic regression methods, repeat sales, and appraisal-based methods (i.e., the SPAR method). Below, recommendations are made on each. Each method attempts to adjust for the change in the “quality mix” of the houses whose prices are observed and combined to construct the index. Some methods, however, are unable to adjust for quality changes of the individual houses, i.e. for the net effect of depreciation of the structures and renovations and extensions. Where data from the administrative processes for buying and selling a residential property are used in the construction of the index, the price will usually relate either to the offer price or to the selling price – these can differ from one another.

12.15 The recommendations do not address the challenge of computing an RPPI in countries where a significant proportion of the housing stock relates to informal or traditional dwellings. An example of computing an RPPI under the latter circumstances is given in Chapter 10 and draws on the experience of South Africa. In such circumstances it is not possible to be very prescriptive in terms of recommendations since the situation will vary considerably among countries and there is no ideal solution that will deliver a residential property price index which is conceptually pure and does not generate practical difficulties. Rather, the compiler will need to draw on the best available sources of information and will no doubt have to make conceptual and methodological compromises in computing an index. In these circumstances it is particularly important that statistical agencies provide evaluations of the resulting price indices and guide users on their uses.

Stratification or mix-adjustment

12.16 Stratification or mix-adjustment is the most straightforward way to control for changes in the composition or quality mix of the properties sold. It also addresses any user need for sub-indices relating to different housing market segments. The effectiveness of stratification will depend upon the stratification variables used because a mix-adjusted measure only controls for compositional change across the various groups – a mix-adjusted index does not account for changes in the mix of properties sold within each subgroup or stratum.

12.17 In theory, the more detailed the stratification, the more the index controls for changes in the characteristics of the properties covered by the index. However, increasing the number of strata reduces the average number of price observations per stratum and in fact can quickly lead to empty strata. Strata or cells which are empty then lead in turn to a lack of matching when the average price and

(*) In some cases even the selling prices may not reflect the “true” market values, for example when they relate to distressed sales arising from divorce etc.
quantity data in each cell are compared across two time periods. A very detailed stratification might also raise the standard error of the overall index. In addition, it may be difficult to identify the most important price-determining characteristics in the way that a method using hedonic regression can do (see next section).

12.18 The main advantages of stratification/mix-adjustment are:

- Depending on the choice of stratification variables, the method adjusts for compositional change amongst the dwellings.
- The method is reproducible, conditional on an agreed list of stratification variables.
- It is not subject to revision.
- Price indices can be constructed for different types and locations of housing.
- The method is relatively easy to apply and to explain to users.

12.19 The main disadvantages of stratification/mix-adjustment are:

- It cannot deal adequately with depreciation of the houses unless the age of the structure is a stratification variable. The latter can result in problems associated with cells with small numbers of price observations.
- The method cannot deal adequately with houses which have undergone major repairs or renovations (unless information on renovations is available).
- It requires information on housing characteristics that are included in the strata so that the sales can be allocated to the correct strata.
- If the stratification scheme is very coarse, compositional changes will affect the indices.
- If the stratification scheme is very fine, the cells can be subject to considerable sampling variability due to small sample sizes or some cells may simply be empty for some periods causing index number difficulties.
- The value of land cannot be separated out using this method.

12.20 Stratification/mix-adjustment is an appropriate method where

- an appropriate level of detail is chosen for the cells and can be applied in practice;
- the age group of the structure is one of the stratification variables;
- a decomposition of the index into structure and land components is not required.

12.21 Stratification/mix-adjustment is recommended where the volume of sales is large enough and information on housing characteristics detailed enough to support a detailed classification of properties. (*)

Hedonic regression

12.22 The application of hedonic techniques for quality adjustment and for computing price indices has made a significant contribution to the methodological development of price indices in recent years and is rapidly becoming a preferred method for compiling constant-quality residential property price indices. (*) There is no uniformity in the practical application of hedonic regression, but the idea underlying hedonics is rather simple. Hedonic regression is a statistical technique that measures the relationship between the observable characteristics of a good or service and its price or value. In the context of residential property price indices, the “best” form of the hedonic function may be linear rather than log-linear to reflect the fact that the value of a property is generally equal to the sum of the price of the structure and the price of the land.

12.23 There are basically two alternative methods of application of hedonics to residential property:

- The time dummy variables method. This method generally uses a single regression, with time dummies and fixed characteristics coefficients, which covers all periods and which is re-run each time the price index is compiled. The (exponentials of the) time dummy coefficients are taken to represent the period-to-period price changes excluding quality (mix) changes. This method has the benefit of simplicity. One of the drawbacks is that it raises the issue of “revisability” of the index because the time dummy coefficients will be updated each time new periods are added and the regression is run.

However, there is a variant of the time dummy method, called the rolling window time dummy method, which can work well in practice and solves the revisability problem. A hedonic regression is run using the data for the last N periods and the last time dummy is used as a chain link factor for updating the index for the previous period. For references to the literature on this method and an example, see chapter 5.

- The hedonic imputation method. A separate hedonic regression is performed in each time period and the “missing” current period prices for the properties sold in the base period are imputed using the predicted prices from the estimated hedonic equation. A symmetric approach is possible by also imputing the “missing” base period prices for the properties sold in the current period and then taking the geometric mean of both hedonic imputation indices.

12.24 Both hedonic regression methods can potentially suffer from omitted variable bias if some important price determining characteristic is omitted from the regression.

(*) If we look at the harmonized house price indices produced by the European National Statistical Institutes, as of 2011 more than half were using hedonics for quality adjustment. For more details, see Marola et al. (2012).
equation. Multicollinearity can be a practical problem, particularly when a decomposition of the index into structures and land components is required. The time dummy variable method has been frequently used by academics, in part due to its simplicity, but the hedonic imputation method is more flexible—it allows characteristics prices to change independently over time whereas the time dummy method forces characteristics prices to move in a proportional manner—and is essentially similar to the traditional matched-model methodology to compute price indices.

Hedonic regression methods can be used in conjunction with stratification to deal with any residual quality-mix change that remains within the strata. This has the added advantage of dealing with the fact that different model specifications may be needed for different segments of the housing market or that the “value” of some characteristics will vary across different market segments.

The main advantages of hedonics are:

- If the list of property characteristics is sufficiently detailed, the method adjusts for both sample mix changes and quality changes (depreciation and renovation) of the individual houses.
- Price indices can be constructed for different types of dwellings and locations through stratification and the application of hedonics to each individual stratum.
- Stratified price indices based on hedonic regressions to control for quality mix changes within strata allow for relative values of the stock of housing to be used to weight the quality-mix adjusted strata indices (in a stock-weighted RPPI).
- The method maximizes the use of the available data.
- It can in principle be used to decompose the overall price index into land and structures components, subject to the availability of data.

The main disadvantages of hedonic regression are:

- The method is often regarded as being data intensive, especially in terms of the housing characteristics to be used as explanatory variables.
- It may be difficult to control sufficiently for location if property prices and price trends differ across detailed regions.
- The method can be sensitive to the variables used in the regression and the functional form for the model.
- The method is not particularly easy to explain to users and from their perspective may lack transparency.

Subject to data being available on salient housing characteristics, the hedonic regression method is generally the best technique for constructing a constant quality residential property price index. The imputations approach to hedonic quality (mix) adjustment has advantages over the time dummy approach. Stratified hedonic indices are preferred over a straightforward application of hedonic regression to the whole data set.

Repeat Sales

The repeat sales method observes the price development of a specific house over a period of time by reference to the selling price each time it is sold. The price change of a selection of houses during overlapping time periods can then be observed to estimate, using a dummy variable regression model, the general trend in residential property prices. Measuring the average price changes in repeat sales on the same properties ensures a “like for like” comparison (ignoring the fact that depreciation and renovations on the structure between the periods of sale can change the property).

The main advantages of the repeat sales method are:

- In its basic form, it requires no information on characteristics of the dwelling units other than the addresses of the properties that are traded. Source data are often available from administrative records.
- It follows a matched-model methodology, under the assumption that depreciation and renovations have not changed the dwelling unit over the time period between subsequent sales.
- Many locational and other price determining characteristics that are difficult to measure are likely to be automatically included.
- Standard repeat sales regressions are easy to run and the resulting price indices are easy to construct.
- No imputations are involved. By construction, location is automatically controlled for.
- The results are, in principle, reproducible.

The main disadvantages of the repeat sales method are:

- The method does not use all of the available selling prices; it uses information only on those properties that have sold more than once during the sample period.
- The standard version of the method ignores (net) depreciation of the dwelling unit.
- Sample selection bias can arise from the restriction to properties that have been sold more than once during the sample period.
- The method cannot generate separate price indices for structures and for land.
- The reliance on repeat sales means that there may not be enough data points to compute monthly residential property price indices for smaller categories of property.
- The sample is updated as new transaction information becomes available. This means that the repeat sales
property price index could be subject to retrospective revisions over a long time period.(9)

- Since a house must be sold at least twice in a repeat sales index, newly built dwelling units are excluded from such an index.

12.32 Although a natural starting point for constructing an index, the repeat sales method is not preferred over the (stratified) hedonic method for constructing a constant quality residential property price index. However, it can offer a solution where there is limited or no information on housing characteristics and there are a relatively large number of repeat transactions to provide enough data points for the required types of residences and where sample selection bias is not considered a problem. It is not recommended when a distinction needs to be made between the price of the structure and the price of the land.

Appraisal-Based Methods

12.33 Appraisal-based methods use “assessed” values, such as valuations for taxation purposes or valuations from specially commissioned surveys using estate agents, often done by reference to similar properties that have been sold, to overcome the two main problems associated with the repeat sales methodology – the relatively small number of price observations which are generated and the susceptibility to sample selection bias. Where the valuations all refer to a standard reference period, the matched model methodology which underlies appraisal-based methods also has the advantage that it can be applied in a straightforward way and with no necessity to use econometrics to adjust for compositional changes. However, like the repeat sales methodology, appraisal-based methods generally cannot deal adequately with quality changes to individual houses. Also, they generally rely on expert judgment on how much a property would sell for rather than on an actual transaction price. Thus, it can be argued, at the extreme, that appraisal-based methods are influenced by judgments or opinions, albeit authoritative and objective.

12.34 The Sale Price Appraisal Ratio (or SPAR) method uses appraisals with a common reference period as base period price in a standard matched-model framework (though the results are normalized to obtain an index that equals 1 (or 100) in the base period). The experiences of the few countries that have computed a SPAR index(10) are generally positive although some researchers have reported a bias arising from frequent re-assessments and reduced precision over time arising from new appraisals.

12.35 The main advantages of the SPAR method are:
- It is straightforward to compute.
- The method benefits from many more observations than the repeat sales method and is therefore less susceptible to problems arising from having a relatively small number of price observations.
- It is less susceptible to sample selection bias than the repeat sales method.
- It does not suffer from revisions to previously computed figures.
- It is reproducible.

12.36 The main disadvantages of the SPAR method are:
- It cannot deal adequately with quality changes (depreciation and renovations) of the dwelling units.(10)
- Data on value assessments at the address level must be available for all properties.
- The method is dependent on the quality of the assessments.
- It cannot be used to decompose the overall property price index into land and structures components.(11)

12.37 The SPAR methodology addresses some of the weaknesses of the repeat sales methodology and is to be preferred to the latter methodology if assessment data of sufficient quality are available and if selectivity bias is considered to be a serious feature of the application of the repeat sales methodology. The SPAR methodology does have its drawbacks but is recommended when the use of hedonics is not possible. The results from the SPAR method are improved if it is used in conjunction with stratification.

Seasonal Adjustment

12.38 If the initial house price series indicates that some seasonal fluctuations occur, then normal seasonal adjustment techniques can be used in order to seasonally adjust the initial series. However, if the hedonic imputation or the stratification method is used to construct the initial index, some more specific recommendations are made below.

12.39 If the stratification method is used to construct the initial index and it exhibits seasonality, then the rolling year method explained in Chapter 5 can be applied to seasonally adjust the series without relying on econometric methods.

12.40 If the hedonic imputation method is used to construct the initial index and it exhibits seasonality, then in order to obtain a seasonally adjusted series, it may be useful to construct year-over-year monthly or quarterly series as an initial step. These initial series can then be aggregated using the rolling year method into a smoothed seasonally adjusted series.

(9) As with the repeat sales method, the price index generated by the SPAR method can in principle be adjusted by using exogenous information on the net depreciation of properties of the type being considered.

(10) Where official decompositions of the total assessed value of the property into land and structures components are available, these could be used to check the land and structures price indices that are generated by hedonic regression methods.
Glossary

Acquisitions approach
An approach in which consumption is identified with the goods and services acquired by a household in some period (as distinct from those wholly or partially used up for purposes of consumption). See also net acquisitions approach.

Aggregate
A set of transactions (or their total value) such as the total purchases made by households on residential property in a certain period.

Aggregation
Combining, or adding, different sets of transactions to obtain larger sets of transactions. The larger set is described as having a higher level of aggregation than the (sub-) sets of which it is composed. The term “aggregation” is also used to mean the process of adding the values of the lower-level aggregates to obtain higher-level aggregates. In the case of price indices, it means the process by which price indices for lower-level aggregates are averaged to obtain price indices for higher-level aggregates.

Asking price
The price at which a property is offered for sale. The asking price can be adjusted during the process of buying and selling a house until the final transaction price is reached.

Assessed value or appraisal
Valuation of the market value of a property. Valuations may be needed to obtain a mortgage loan. In some countries assessments are performed on the government’s behalf for (property) tax purposes. Assessed property values are also referred to as appraisals. See also Sale Price Appraisal Ratio method.

Axiomatic (test) approach
The approach to index number theory that determines the choice of index number formula, on the basis of its mathematical properties. A list of tests is drawn up, each test requiring an index to possess a certain property or satisfy a certain axiom. An index number may then be chosen on the basis of the number of tests satisfied. Not all tests may be considered to be equally important and the failure to satisfy one or two key tests may be considered sufficient grounds for rejecting an index.

Base period
The base period is usually understood to mean the period with which all the other periods are compared. The term may, however, have different meanings in different contexts. Three types of base period may be distinguished:

- the price reference period – the period that provides the prices to which the prices in other periods are compared. The prices of the price reference period appear in the denominators of the price relatives, or price ratios, used to calculate the index;
- the weight reference period – the period for which the expenditures serve as weights for the index. If the expenditures are hybrid (i.e., if the quantities of one period are valued at the prices of some other period), the weight reference period is the period to which the quantities refer;
- the index reference period – the period for which the value of the index is set equal to 100.

It should be noted that, in practice, the duration of the weight reference period for an RPPI is often a year, whereas the RPPI is typically calculated monthly or quarterly, the duration of the price reference period being a month or quarter. Thus, the weight and price reference periods frequently coincide.

Bias
A systematic tendency for the calculated RPPI to diverge from some ideal or preferred index, resulting from the method of data collection or processing or the index formula used. See also sample selection bias.

Chain index
An index number series for a long sequence of periods that is obtained by linking together index numbers spanning shorter sequences of periods. A chain index, computed according to some index number formula (such as the Fisher), is the product of period-on-period indices which are computed with the same formula. See also Linking.

Characteristics
The physical and economic attributes of a good or service that serve to identify it and enable it to be classified. For residential property these relate to both the structure (the building) and the location/land.

Characteristics prices hedonic approach
An hedonic regression method where the change in the estimated values of the parameters for the characteristics of the (average) property sold, i.e. the shadow prices of the characteristics, determines the residential property prices.
price index. Under certain assumptions this approach is equivalent to the hedonic imputation approach.

Component
A set of the goods and services that make up some defined aggregate. Also used in the context of decomposing the price property price (index) into land and structures components.

Consistency in aggregation
An index is said to be consistent in aggregation when the index for some aggregate has the same value whether it is calculated directly in a single operation, without distinguishing its components, or whether it is calculated in two or more steps by first calculating separate indices, or sub-indices, for its components, or sub-components, and then aggregating them, the same formula being used at each step.

Consumer price index (CPI)
A monthly or quarterly price index compiled and published by an official statistical agency that measures changes in the prices of consumption goods and services acquired or used by households. Its exact definition, including the treatment of owner-occupied housing, may vary from country to country. In Europe, the Harmonised Index of Consumer Prices (HICP) currently excludes owner-occupied housing.

Coverage
The set of properties of which the prices are actually included in a price index. For practical reasons, coverage may have to be less than the ideal scope of the index. That is, the types of property actually priced may not cover all of the types that are sold or belong to the housing stock.

Current period, or comparison period
In principle, the current period refers to the most recent period for which the index has been compiled or is being compiled. The term is widely used, however, to mean the comparison period; that is, the period that is compared with the base period, usually the price reference or index reference period. It is also used to mean the later of the two periods being compared. The exact meaning is usually clear in the context.

Data cleaning
Procedures, often automated, used to delete entry errors in data sets, observations which are deemed implausible, or outliers.

Deflating
The division of the current value of some aggregate by a price index (in this context referred to as a deflator), in order to revalue its quantities at the prices of the price reference period.

Depreciation
The gradual and permanent decrease in the economic value of a structure or the housing stock through physical deterioration or obsolescence over time.

Domain
An alternative term for the scope of an index.

Drift
A chain index is said to drift if it does not return to unity when prices in the current period return to their levels in the base period. Chain indices are liable to drift when prices fluctuate over the periods they cover.

Durable consumption good
A consumption good that can be used repeatedly or continuously for purposes of consumption over a long period of time, typically several years. A house is an extreme form of a durable consumption good due to its very long expected lifetime. This has led to different approaches to the treatment of owner-occupied housing in economic statistics.

Economic approach
The economic approach to index number theory assumes that the quantities are functions of the prices, the observed data being generated as solutions to various economic optimization problems. While this approach is very relevant for the CPI as an approximation to a cost-of-living index, it seems less relevant for a residential property price index. See also axiomatic or test approach.

Editing
The process of scrutinizing and checking the prices reported by price collectors. Some checks may be carried out by computers using statistical programs written for the purpose. See also data cleaning.

Elementary aggregate
Usually defined as the lowest aggregate for which expenditure data are available and used for index construction purposes. Elementary aggregates also serve as strata for the sampling of items to be priced. The values of the elementary aggregates are used to weight the price indices for elementary aggregates to obtain higher-level indices.

In the context of a sales-based residential property price index, the term elementary aggregate is less appropriate. As every property is basically unique, the quantities are equal to 1, so that weights are available at the most detailed level.

Existing dwellings
The term “existing dwellings” is sometimes used to distinguish them from dwellings that are newly built (and added to the housing stock).
Fisher price index

The geometric average of the Laspeyres price index and the Paasche price index. The Fisher index is *symmetric* and *superlative*. Sales based residential property price indices can always be computed using the Fisher formula because the quantities are equal to 1 (as each dwelling is essentially a unique good).

Fixed weight indices

An abbreviated description for a series of weighted arithmetic averages of price relatives of price indices where the weights are kept fixed over time. In a residential property price index context, the weights can be sales (expenditure) weights or stock weights.

Geometric Laspeyres index

A weighted geometric average of the price relatives using the expenditure shares of the price reference period as weights.

Goods

Physical objects for which a demand exists, over which ownership rights can be established and for which ownership can be transferred between units by engaging in transactions on the market.

Hedonic regression

The estimation of a hedonic model, using regression techniques, that explains the price of the property as a function of its characteristics (relating to the structures as well as the location). See also *hedonic imputation approach* and *time dummy variable hedonic approach*.

Hedonic imputation approach

An approach to estimating a quality-adjusted residential property price index where “missing” prices are imputed using a hedonic regression model. The model parameters are re-estimated in each time period, which makes this approach more flexible than the time dummy variable hedonic approach.

Households

Households may be either individual persons living alone or groups of persons living together who make common provision for food or other essentials for living. Most countries choose to exclude groups of persons living in large institutional households (barracks, retirement homes, etc.) from the scope of their CPIs.

Housing stock

The total number of residential units available for non-transient occupancy. Depending on the particular definition used, the housing stock may or may not include mobile homes, etc.

Hybrid (repeat sales) models

A regression-based method to estimating residential property price indices which combines *repeat-sales* and *hedonic* approaches.

Identity test

A test under the axiomatic approach that requires that, if the price of each item remains the same between the periods compared, the price index must equal unity.

Imputed price

The price assigned to an item (e.g. a property) for which the price is “missing” in a particular period. This may be done using hedonic regression methods. See also *hedonic imputation approach*.

The term “imputed price” may also refer to the price assigned to a good or service item that is not sold on the market, such as a good or service produced for own consumption, including housing services produced by owner-occupiers measured by imputed rent. See also *rental equivalence*.

Index reference period

The period for which the value of the index is set at 100 (or, alternatively, 1).

Informal housing market

Residential areas where a group of housing units has been constructed on land to which the occupants have no legal claim, or which they occupy illegally, or unplanned settlements and areas where housing is not in compliance with current planning and building regulations.

Jevons price index

An elementary price index defined as the unweighted geometric average of the sample price relatives.

Laspeyres price index

A price index in which the quantities of the goods and services refer to the earlier of the two periods compared, the price reference period. The Laspeyres index can also be expressed as a weighted arithmetic average of the price relatives with the expenditure shares in the earlier period as weights. The earlier period serves as both the weight reference period and the price reference period.

Linking

Splicing together two consecutive series of price observations, or price indices, that overlap in one or more periods. If the two sequences overlap by a single period, the usual procedure is simply to rescale one or other sequence so that the value in the overlap period is the same in both sequences and the spliced sequences form one continuous series.
Lowe price index
A price index that measures the change between periods 0 and \(t \) in the total value of a set of goods and services at fixed quantities. The quantities do not necessarily have to consist of the actual quantities in some period. The class of indices covered by this definition is very broad and includes, by appropriate specification of the quantity terms, the Laspeyres and Paasche indices.

Offer price
The price a potential buyer says he will be willing to pay for the property.

Outlier
A term that is generally used to describe any extreme value in a set of survey data. In an RPPI context, it is used for an extremely high or low property price or price relative, which requires further investigation and should be deleted when deemed incorrect.

Owner-occupied housing
Dwellings owned by the households that live in them. The dwellings are fixed assets that their owners use to produce housing services for their own consumption, these services being usually included within the scope of a CPI. The rents may be imputed by the rents payable on the market for equivalent accommodation or by user costs. See also rental equivalence and User cost.

Paasche price index
A price index in which the quantities of the goods and services considered refers to the later of the two periods compared. The later period serves as the weight reference period and the earlier period as the price reference period. The Paasche index can also be expressed as a weighted harmonic average of the price relatives that uses the actual expenditure shares in the later period as weights.

Payments approach
See money outlays approach.

Price reference period
The period of which the prices appear in the denominators of the price relatives. See also Base period.

Price relative
The ratio of the price of an individual product in one period to the price of that same product in some other period.

Products
A generic term used to mean a good or a service. Individual sampled products selected for pricing are often described as items.

Pure price change
The change in the price of a property of which the characteristics are unchanged or the change in the property price after adjusting for any change in quality (due to renovations, extensions and depreciation).

Quality change
A change in the (quality determining) characteristics of a good or service. In the case of a residential property this includes both depreciation of the structure and renovations, such as the modernisation of kitchens and...
bathrooms, the introduction of improved insulation and central heating or air conditioning systems.

Quality adjustment
An adjustment to the change in the price of a property of which the characteristics change over time that is designed to remove the contribution of the change in the characteristics to the observed price change. In practice, the required adjustment can only be estimated. Different methods of estimation, including hedonic methods, may be used in different circumstances. These methods can also be used to control for compositional or quality mix changes over time in the samples of properties sold.

Sample selection bias
Bias in an index that can result when the sample is not representative of the population. In the housing context, the sample of properties may either not be representative of all sales (which is particularly relevant for a sales based index) or not be representative of the housing stock (which is relevant for a stock based index). In all sales are observed, there will be no sample selection bias in a sales based property price index.

Sampling frame
A list of the units in the universe from which a sample of units can be selected. The list may contain information about the units, which may be used for sampling purposes. Such lists may not cover all the units in the designated universe and may also include units that do not form part of that universe.

Scope
The set of products for which the index is intended to measure the price changes. The coverage of an index denotes the actual set of products included, as distinct from the intended scope of the index.

Seasonal goods
Seasonal goods are goods that either are not available on the market during certain seasons or periods of the year, or are available throughout the year but with regular fluctuations in their quantities and prices that are linked to the season or time of the year.

Selling (or transaction) price
The final transaction price of a property.

Specification
A description or list of the characteristics that can be used to identify an individual dwelling unit to be priced.

SPAR method
An acronym for Sale Price Appraisal Ratio method, an approach to constructing a residential property price index which combines current period selling prices with appraisals (assessed values) pertaining to some earlier base period.

Stratification method
Stratification and “re-weighting” of a sample is a general technique for obtaining more stable results or mitigating any bias due to sample selection problems, including non-response.

In the context of a residential property price index, the sample of properties sold is subdivided into a number of relatively homogeneous strata or cells, according to a (limited) number of price determining characteristics.
Glossary

Average prices (unit values) or median prices can then be used to compute price indices for each stratum. In the second stage, these stratum indices are aggregated up using sales weights or stock weights. This method has frequently been used to adjust for compositional change of the samples, or changes in the quality mix of properties sold, and is also known as mix adjustment.

Stratification can also be used in conjunction with other methods to control for quality mix changes, for example with hedonic regression, repeat sales or SPAR methods.

User cost
The cost incurred over a period of time by the owner of a fixed asset or consumer durable as a consequence of using it to provide a flow of capital or consumption services. User cost consists mainly of the depreciation of the asset or durable (measured at current prices and not at historic cost) plus the capital, or interest, cost.

Uses approach
An approach to CPIs in which the consumption in some period is identified with the consumption goods and services actually used up by a household to satisfy their needs and wants (as distinct from the consumption goods and services acquired). In this approach, the consumption of consumer durables in a given period is measured by the values of the flows of services provided by the stocks of durables owned by households. These values may be estimated by the user costs.

Value
Price times quantity. The value of the expenditures on a set of homogeneous products can be factored uniquely into its price, or unit value, and quantity components. Similarly, the change over time in the value of a set of homogeneous products can be decomposed uniquely into the change in the unit value and the change in the total quantities. There are, however, many ways of factoring the change over time in the value of a set of heterogeneous products into its price and quantity components.

In a housing context, value may also refer to a single property. The “price” of a property is actually a value as it is made up of the price of the structures and the price of the land that the structure is built on.

Weight reference period
The period of which the expenditure shares serve as the weights or of which the quantities make up the set of properties for a Lowe index. There may be no weight reference period when the expenditure shares for the two periods are averaged, as in the Törnqvist index, or when the quantities are averaged, as in the Walsh index. See also base period.

Weights
A set of numbers summing to unity that are used to calculate averages. In an RPPI context, the weights are generally expenditure (sales) or stock value shares that sum to unity by definition. They are used to average price relatives for individual properties.
Bibliography

Acadometrics (2009), House Price Indices – Fact or Fiction, www.acadametrics.co.uk.

Balk, B.M. (2008), Price and Quantity Index Numbers; Models for Measuring Aggregate Change and Difference, New York: Cambridge University Press.

Reinhart, C.M. and K.S. Rogoff (2009), This Time is Different; Eight Centuries of Financial Folly, Princeton and Oxford: Princeton University Press.

Silver, M. (2009a), "Do Unit Value Export, Import, and Terms of Trade Indices Represent or Misrepresent Price Indices?", IMF Staff Papers 56, 297-322, IMF, Washington DC.

Standard and Poor's (2009), S&P/Case-Shiller Home Price Indices; Index Methodology, New York: Standard and Poor's.

Wyngarden, H. (1927), An Index of Local Real Estate Prices, Michigan Business Studies Volume 1, Number 2, Ann Arbor: University of Michigan.

Index

- **Accuracy** 9.35
 - trade-off between frequency and accuracy 9.38
- **(net) acquisitions approach** (g) 3.15, 9.28
- **Administrative data** 9.1
- **Aggregation** (g)
 - first-stage aggregation 4.13-15
 - examples of aggregation 11.17-11.25
 - sales versus stocks of housing 8.13-17
 - second-stage aggregation 4.16-18
- **Anticipated inflation rates** (for structures and land) 3.55, 3.59
- **Asking price** (g), 9.10-13
- **Assessed value or appraisal** (g) 7.2, 7.17-20
- **Assessment-based methods** 3.23, 7.1-6
- **Axiomatic (test) approach** (g)
- **Base period** (g)
- **Bias** (g)
 - omitted variables bias 5.6
 - sample selection bias 4.3, 6.15-18
 - unit value bias 4.15
- **Builder's model** 8.3-4
- **Buying and selling a property**
 - process of buying and selling 9.3-9.6, 10.59
 - time line (Japan) 10.56-57
- **Buy-to-let market** 6.16
- **Capitalization ratio** 3.70-71
- **Case Studies**
 - Canada 10.27-40
 - Colombia 10.72-77
 - Germany 10.41-49
 - India 10.65-71
 - Japan 10.50-58
 - South Africa 10.78-93
 - United Kingdom 10.59-64
- **Chain index** (g) 4.19-20
- **Characteristics** (g) 3.18, 4-29, 5.1
 - adding structures characteristics 8.10-12
 - land (or plot) size 4.34
 - structure size 4.34
- **Characteristics prices hedonic approach** (g), 5.20-24
- **Central tendency measures** 4.1, 11.3-10
- **Component** (g)
- **Consistency in aggregation** (g)
- **Consistency of monthly with quarterly estimates** 3.31-33
- **Construction cost price index** 8.37
- **Consumer price index (CPI)** (g)
- **Comparability (across countries)** 9.43-44, 10.13
- **Cost of production approach** 8.2-4
- **Coverage** (g), 9.6, 9.8, 9.34-35
- **Current period, or comparison period** (g)
- **Data cleaning** (g) 5.9, 6.11-12, 7.22, 7.33
- **Data sources (in different countries)** 10.12-13
- **Decomposition into land and structures components** 8.1-57
- **Deflating** (g)
- **Depreciation** (g)
 - depreciation rate 3.48, 8.5
 - net depreciation 4.9, 8.5-8.9
 - one hoss shay (or light bulb) depreciation 3.51
 - straight line (or geometric) depreciation 3.51, 5.49-52
- **Developing countries** 9.48-54
- **Discounting** 3.43
- **Domain** (g) see scope
- **Drift** (g)
- **Durable consumption good** (g) 3.40
- **Economic approach** (g)
- **Editing** (g) see data cleaning
- **Elementary aggregate** (g)
- **Ex ante user cost** 3.47
- **Existing dwellings** (g)
- **Expert opinion information** 9.22
- **Family of residential property price indices** 3.29
- **Financial opportunity cost approach** 3.45
- **Fisher (ideal) price index** (g) 4.16-18, 11.19
- **Fixed weight indices** (g)
- **Fixed base indices** 4.18
- **Frequency of residential property price indices** 3.28-30, 9.38-39
- geometric Laspeyres index (g)
- **Goods** (g)
- **Gross capital formation** 3.13-14
- **Hedonic regression** (g) 3.22, 12.22-28
 - examples of hedonic regression methods 11.26-44
 - use of monotonicity restrictions 8.31-35
 - use of exogenous information on structures 8.36-40, 8.53-56
- **Hedonic imputation approach** (g) 5.25-34, 5.65-69, 11.40-44
 - arithmetic imputation indices 5.26-29
 - double imputation 5.27-29
 - double imputation Laspeyres index 5.27, 5.66, 11.43
 - double imputation Paasche index 5.28, 5.67
 - double imputation Fisher index 5.29, 5.68
 - geometric imputation indices 5.30-34
 - hedonic modeling 5.2-5
- **Parametric linear or logarithmic-linear) model** 5.2, 11.28-31
 - single imputation 5.27
 - hedonic quality adjustment 5.32-33
 - in different countries 10.18
 - quality adjustment for structures 5.49-52
 - households (g)
 - housing stock (g)
 - approximation of housing stock value 8.51-52
- **Hybrid models** (g) see repeat sales method
Index

<table>
<thead>
<tr>
<th>Term</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>identity test (g)</td>
<td>6.19-20</td>
</tr>
<tr>
<td>imputed price (g)</td>
<td></td>
</tr>
<tr>
<td>index reference period (g)</td>
<td>6.19-20</td>
</tr>
<tr>
<td>inefficiency (of repeat sales approach)</td>
<td>6.19-20</td>
</tr>
<tr>
<td>informal housing market (g), 9.48-54, 10.85-94</td>
<td>9.48-54, 10.85-94</td>
</tr>
<tr>
<td>Jevons price index (g)</td>
<td>6.19-20</td>
</tr>
<tr>
<td>Laspeyres price index (g)</td>
<td>6.19-20</td>
</tr>
<tr>
<td>land</td>
<td>6.19-20</td>
</tr>
<tr>
<td>– building land price index (Germany)</td>
<td>10.48-49</td>
</tr>
<tr>
<td>– decomposition into land and structures components</td>
<td>8.1-57</td>
</tr>
<tr>
<td>– price of land 5.3</td>
<td></td>
</tr>
<tr>
<td>linear splines 8.25-30</td>
<td></td>
</tr>
<tr>
<td>linking (g)</td>
<td>6.19-20</td>
</tr>
<tr>
<td>Lowe price index (g), 8.51-52</td>
<td></td>
</tr>
<tr>
<td>lower-level index (g) see (first-stage aggregation)</td>
<td></td>
</tr>
<tr>
<td>life-cycle theories 6.16</td>
<td></td>
</tr>
<tr>
<td>matched models approach (g)</td>
<td></td>
</tr>
<tr>
<td>market value (g)</td>
<td></td>
</tr>
<tr>
<td>mean index (g)</td>
<td></td>
</tr>
<tr>
<td>median index (g)</td>
<td>11.17</td>
</tr>
<tr>
<td>meta-data 10.8, 10.22-26</td>
<td></td>
</tr>
<tr>
<td>mix adjustment (g) see stratification</td>
<td></td>
</tr>
<tr>
<td>money outlays or payments approach (g), 9.30-31</td>
<td></td>
</tr>
<tr>
<td>monotonicity restrictions 8.31-35</td>
<td></td>
</tr>
<tr>
<td>mortgage companies 9.14-18</td>
<td></td>
</tr>
<tr>
<td>moving average 4.45</td>
<td>12.38-40</td>
</tr>
<tr>
<td>Mudgett-Stone framework 4.42-45</td>
<td>4.42-45, 8.43-48</td>
</tr>
<tr>
<td>multicollinearity 5.8, 8.3, 8.24</td>
<td>4.42-45, 8.43-48</td>
</tr>
<tr>
<td>net acquisitions approach (g), 9.28</td>
<td></td>
</tr>
<tr>
<td>offer price (g), 9.14-15</td>
<td></td>
</tr>
<tr>
<td>opportunity cost approach 3.69-71</td>
<td></td>
</tr>
<tr>
<td>outlier (g) see data cleaning</td>
<td></td>
</tr>
<tr>
<td>owner-occupied housing (g)</td>
<td></td>
</tr>
<tr>
<td>Paasche price index (g) 4.16-18</td>
<td></td>
</tr>
<tr>
<td>parameter stability 11.37</td>
<td></td>
</tr>
<tr>
<td>payments approach (g) 3.15</td>
<td></td>
</tr>
<tr>
<td>pooling (cross section) data 5.11-12</td>
<td></td>
</tr>
<tr>
<td>price data at different stages 9.3-5</td>
<td></td>
</tr>
<tr>
<td>price reference period (g)</td>
<td></td>
</tr>
<tr>
<td>price relative (g)</td>
<td></td>
</tr>
<tr>
<td>products (g)</td>
<td></td>
</tr>
<tr>
<td>pure price change (g)</td>
<td></td>
</tr>
<tr>
<td>purpose-designed statistics 9.7-8</td>
<td></td>
</tr>
<tr>
<td>– fitness-for-purpose of data sources 9.23-26</td>
<td></td>
</tr>
<tr>
<td>– quality change (g)</td>
<td></td>
</tr>
<tr>
<td>– quality adjusted structures 8.10-11</td>
<td></td>
</tr>
<tr>
<td>– quality adjusted price index for structures 8.23</td>
<td></td>
</tr>
<tr>
<td>real estate agents 9.12-13</td>
<td></td>
</tr>
<tr>
<td>regression techniques</td>
<td></td>
</tr>
<tr>
<td>– ordinary least squares regression 5.5</td>
<td></td>
</tr>
<tr>
<td>– nonlinear regression 8.6</td>
<td></td>
</tr>
<tr>
<td>– weighted least squares regression 5.15</td>
<td></td>
</tr>
<tr>
<td>– weighted least squares repeat sales regression 6.13, 11.52-56</td>
<td></td>
</tr>
<tr>
<td>reproducibility 6.12</td>
<td></td>
</tr>
<tr>
<td>rental equivalence approach (g) 3.15, 3.61</td>
<td></td>
</tr>
<tr>
<td>rental cost (approximation) 3.49</td>
<td></td>
</tr>
<tr>
<td>rent to value (price) ratio see capitalization ratio</td>
<td></td>
</tr>
<tr>
<td>repeat sales method (g) 3.21, 6.1-32, 11.45-56, 12.29-32</td>
<td>3.21, 6.1-32, 11.45-56, 12.29-32</td>
</tr>
<tr>
<td>– arithmetic repeat sales method 6.9</td>
<td></td>
</tr>
<tr>
<td>– Gaussian random walk 6.4</td>
<td></td>
</tr>
<tr>
<td>– holding period 6.7</td>
<td></td>
</tr>
<tr>
<td>– hybrid models 6.26-27</td>
<td></td>
</tr>
<tr>
<td>– use of assessment information 6.20</td>
<td></td>
</tr>
<tr>
<td>– use of information on maintenance and renovation expenditures 6.23</td>
<td></td>
</tr>
<tr>
<td>– repeat sales equation 6.4</td>
<td></td>
</tr>
<tr>
<td>– revisions 6.21</td>
<td></td>
</tr>
<tr>
<td>– weighted least squares technique 11.52-56</td>
<td></td>
</tr>
<tr>
<td>representative property (g)</td>
<td></td>
</tr>
<tr>
<td>residential property (g)</td>
<td></td>
</tr>
<tr>
<td>residential real estate services industry output 3.9-12</td>
<td></td>
</tr>
<tr>
<td>revisions 5.17, 9.40-42</td>
<td></td>
</tr>
<tr>
<td>revision policy 3.34-35</td>
<td></td>
</tr>
<tr>
<td>reweighting (g)</td>
<td></td>
</tr>
<tr>
<td>rolling window approach (g) 4.42-45, 8.43-48</td>
<td>4.42-45, 8.43-48</td>
</tr>
<tr>
<td>sample (g)</td>
<td></td>
</tr>
<tr>
<td>sample probability 4.34-35</td>
<td></td>
</tr>
<tr>
<td>sample selection bias (g) see bias</td>
<td></td>
</tr>
<tr>
<td>sampling frame (g)</td>
<td></td>
</tr>
<tr>
<td>scope (g), 12.7-9</td>
<td></td>
</tr>
<tr>
<td>seasonal goods (g)</td>
<td></td>
</tr>
<tr>
<td>seasonal adjustment 3.36-37, 12.38-40</td>
<td></td>
</tr>
<tr>
<td>seasonality (treatment in a residential property price index)</td>
<td>4.42-46</td>
</tr>
<tr>
<td>selling (or transaction) price (g)</td>
<td></td>
</tr>
<tr>
<td>spatial dependence 5.7</td>
<td></td>
</tr>
<tr>
<td>specification (g)</td>
<td></td>
</tr>
<tr>
<td>SPAR method (g) 7.4-35, 12.33-37</td>
<td></td>
</tr>
<tr>
<td>– arithmetic SPAR index 7.10-12</td>
<td></td>
</tr>
<tr>
<td>– descriptive regression model 7.25</td>
<td></td>
</tr>
<tr>
<td>– estimator of stock-based index 7.13</td>
<td></td>
</tr>
<tr>
<td>– generalized regression framework 7.28</td>
<td></td>
</tr>
<tr>
<td>– model assumptions 7.26-27</td>
<td></td>
</tr>
<tr>
<td>– Paaasche-type SPAR index 7.8</td>
<td></td>
</tr>
<tr>
<td>– quality change bias 7.15-16</td>
<td></td>
</tr>
<tr>
<td>– sale price appraisal ratio (or relative) 7.7</td>
<td></td>
</tr>
<tr>
<td>splines see linear splines</td>
<td></td>
</tr>
<tr>
<td>standardized property 5.20</td>
<td></td>
</tr>
<tr>
<td>starting problem (of index series) 7.35</td>
<td></td>
</tr>
<tr>
<td>stock-based index 4.21-24, 5.23-24, 8.15-17</td>
<td>4.21-24, 5.23-24, 8.15-17</td>
</tr>
<tr>
<td>– using hedonic imputation 8.50-52</td>
<td></td>
</tr>
<tr>
<td>– stratification method (g) 3.20, 4.4-4.12, 12.16-21</td>
<td>3.20, 4.4-4.12, 12.16-21</td>
</tr>
<tr>
<td>– in different countries 10.17, 11.11-16</td>
<td>10.17, 11.11-16</td>
</tr>
<tr>
<td>– market segmentation 4.11-12, 5.37</td>
<td></td>
</tr>
<tr>
<td>– stratified hedonic indices 5.35-40</td>
<td></td>
</tr>
<tr>
<td>– structures</td>
<td></td>
</tr>
<tr>
<td>– price of structures 5.3</td>
<td></td>
</tr>
<tr>
<td>– superlative index (g) 11.19</td>
<td></td>
</tr>
<tr>
<td>symmetric index (g)</td>
<td></td>
</tr>
</tbody>
</table>

©International Monetary Fund. Not for Redistribution
system of national accounts (SNA) (g)
 - framework for residential property price indices 3.6-14, 12.4
systematic error see bias
time dummy variable (hedonic) approach (g) 5.5, 5.11-18
 - adjacent-period technique 11.38-39
 - time dummy index 5.11
 - linear time dummy model 5.57-60
 - linear time dummy model with quality adjusted structures 5.61-63
 - log-linear time dummy model 5.45-48, 11.32-39
 - log-log time dummy model 5.53-55
timeliness 9.8
Törnqvist-Theil index 11.19
traditional dwellings (in developing countries), 9.48-54
 (final) transaction price
 - from mortgage companies 9.18
 - from property registers and tax offices 9.19-20
transaction costs 3.14
transaction noise 6.18
turning point 4.2
unit value or average value (g) 3.32, 4.15
unit value bias see bias
user costs
 - durable goods in general 3.39-52
 - for owner occupied housing 3.53-68
 - user cost approach (g) 3.15, 3.40-52
 - simplified user cost approach 3.65
 - user requirements 9.25
 - uses of residential property price indices
 - component of wealth 2.14-15
 - deflator in national accounts 2.21-23
 - financial soundness indicators 2.16-20
 - internation and inter-area comparisons 2.28-30
 - macro-economic indicator 2.8-11
 - monetary policy and inflation targeting 2.12-13
 - owner occupied housing in CPI 2.27
uses approach (g)
valuation price
 - from mortgage companies 9.16-17
 - from tax offices 9.21
value (g)
weights (g)
 - data sources for weights 9.45-47
 - weight reference period (g)
 - non-formal (informal and traditional) housing 10.89-90
 - sales weights 4.6
 - stock weights 4.6
HOW TO OBTAIN EU PUBLICATIONS

Free publications:
- via EU Bookshop (http://bookshop.europa.eu);
- at the European Union’s representations or delegations. You can obtain their contact details on the Internet (http://ec.europa.eu) or by sending a fax to +352 2929-42758.

Priced publications:

Priced subscriptions (e.g. annual series of the Official Journal of the European Union and reports of cases before the Court of Justice of the European Union):
Handbook on Residential Property Prices Indices (RPPIs)

For most citizens, buying a residential property (dwelling) is the most important transaction during their lifetime. Residential properties represent the most significant component of households’ expenses and, at the same time, their most valuable assets. The Residential Property Prices Indices (RPPIs) are index numbers measuring the rate at which the prices of residential properties are changing over time.

RPPIs are key statistics not only for citizens and households across the world, but also for economic and monetary policy makers. Among their professional uses, they serve, for example, to monitor macroeconomic imbalances and risk exposure of the financial sector.

This Handbook provides, for the first time, comprehensive guidelines for the compilation of RPPIs and explains in depth the methods and best practices used to calculate an RPPI. It also examines the underlying economic and statistical concepts and defines the principles guiding the methodological and practical choices for the compilation of the indices. The Handbook primarily addresses official statisticians in charge of producing residential property price indices; at the same time, it addresses the overall requirement on RPPIs by providing a harmonised methodological and practical framework to all parties interested in the compilation of such indices.

The RPPIs Handbook has been written by leading academics in index number theory and by recognised experts in RPPIs compilation. Its development has been co-ordinated by Eurostat, the statistical office of the European Union, with the collaboration of the International Labour Organization (ILO), International Monetary Fund (IMF), Organisation for Economic Co-operation and Development (OECD), United Nations Economic Commission for Europe (UNEC) and the World Bank.