Browse

You are looking at 1 - 3 of 3 items for :

  • Neural Networks and Related Topics x
Clear All
Marijn A. Bolhuis and Brett Rayner
We leverage insights from machine learning to optimize the tradeoff between bias and variance when estimating economic models using pooled datasets. Specifically, we develop a simple algorithm that estimates the similarity of economic structures across countries and selects the optimal pool of countries to maximize out-of-sample prediction accuracy of a model. We apply the new alogrithm by nowcasting output growth with a panel of 102 countries and are able to significantly improve forecast accuracy relative to alternative pools. The algortihm improves nowcast performance for advanced economies, as well as emerging market and developing economies, suggesting that machine learning techniques using pooled data could be an important macro tool for many countries.
Mr. Jorge A Chan-Lau and Ran Wang
We introduce unFEAR, Unsupervised Feature Extraction Clustering, to identify economic crisis regimes. Given labeled crisis and non-crisis episodes and the corresponding features values, unFEAR uses unsupervised representation learning and a novel mode contrastive autoencoder to group episodes into time-invariant non-overlapping clusters, each of which could be identified with a different regime. The likelihood that a country may experience an econmic crisis could be set equal to its cluster crisis frequency. Moreover, unFEAR could serve as a first step towards developing cluster-specific crisis prediction models tailored to each crisis regime.
Jin-Kyu Jung, Manasa Patnam, and Anna Ter-Martirosyan
Forecasting macroeconomic variables is key to developing a view on a country's economic outlook. Most traditional forecasting models rely on fitting data to a pre-specified relationship between input and output variables, thereby assuming a specific functional and stochastic process underlying that process. We pursue a new approach to forecasting by employing a number of machine learning algorithms, a method that is data driven, and imposing limited restrictions on the nature of the true relationship between input and output variables. We apply the Elastic Net, SuperLearner, and Recurring Neural Network algorithms on macro data of seven, broadly representative, advanced and emerging economies and find that these algorithms can outperform traditional statistical models, thereby offering a relevant addition to the field of economic forecasting.