Browse

You are looking at 1 - 10 of 11 items for :

  • IMF Working Papers x
  • Intelligence (AI) & Semantics x
Clear All
Jin-Kyu Jung, Manasa Patnam, Anna Ter-Martirosyan, and Mr. Vikram Haksar

Forecasting macroeconomic variables is key to developing a view on a country's economic outlook. Most traditional forecasting models rely on fitting data to a pre-specified relationship between input and output variables, thereby assuming a specific functional and stochastic process underlying that process. We pursue a new approach to forecasting by employing a number of machine learning algorithms, a method that is data driven, and imposing limited restrictions on the nature of the true relationship between input and output variables. We apply the Elastic Net, SuperLearner, and Recurring Neural Network algorithms on macro data of seven, broadly representative, advanced and emerging economies and find that these algorithms can outperform traditional statistical models, thereby offering a relevant addition to the field of economic forecasting.

Mr. Jorge A Chan-Lau and Ran Wang
We introduce unFEAR, Unsupervised Feature Extraction Clustering, to identify economic crisis regimes. Given labeled crisis and non-crisis episodes and the corresponding features values, unFEAR uses unsupervised representation learning and a novel mode contrastive autoencoder to group episodes into time-invariant non-overlapping clusters, each of which could be identified with a different regime. The likelihood that a country may experience an econmic crisis could be set equal to its cluster crisis frequency. Moreover, unFEAR could serve as a first step towards developing cluster-specific crisis prediction models tailored to each crisis regime.
Mr. Marco Marini and Mr. Tommaso Di Fonzo
This work presents a new technique for temporally benchmarking a time series according to the growth rates preservation principle (GRP) by Causey and Trager (1981). A procedure is developed which (i) transforms the original constrained problem into an unconstrained one, and (ii) applies a Newton's method exploiting the analytic Hessian of the GRP objective function. We show that the proposed technique is easy to implement, computationally robust and efficient, all features which make it a plausible competitor of other benchmarking procedures (Denton, 1971; Dagum and Cholette, 2006) also in a data-production process involving a considerable amount of series.
Majid Bazarbash
Recent advances in digital technology and big data have allowed FinTech (financial technology) lending to emerge as a potentially promising solution to reduce the cost of credit and increase financial inclusion. However, machine learning (ML) methods that lie at the heart of FinTech credit have remained largely a black box for the nontechnical audience. This paper contributes to the literature by discussing potential strengths and weaknesses of ML-based credit assessment through (1) presenting core ideas and the most common techniques in ML for the nontechnical audience; and (2) discussing the fundamental challenges in credit risk analysis. FinTech credit has the potential to enhance financial inclusion and outperform traditional credit scoring by (1) leveraging nontraditional data sources to improve the assessment of the borrower’s track record; (2) appraising collateral value; (3) forecasting income prospects; and (4) predicting changes in general conditions. However, because of the central role of data in ML-based analysis, data relevance should be ensured, especially in situations when a deep structural change occurs, when borrowers could counterfeit certain indicators, and when agency problems arising from information asymmetry could not be resolved. To avoid digital financial exclusion and redlining, variables that trigger discrimination should not be used to assess credit rating.
Mr. Andrew J Tiffin
Macroeconomic analysis in Lebanon presents a distinct challenge. For example, long delays in the publication of GDP data mean that our analysis often relies on proxy variables, and resembles an extended version of the “nowcasting” challenge familiar to many central banks. Addressing this problem—and mindful of the pitfalls of extracting information from a large number of correlated proxies—we explore some recent techniques from the machine learning literature. We focus on two popular techniques (Elastic Net regression and Random Forests) and provide an estimation procedure that is intuitively familiar and well suited to the challenging features of Lebanon’s data.
Marijn A. Bolhuis and Brett Rayner
We leverage insights from machine learning to optimize the tradeoff between bias and variance when estimating economic models using pooled datasets. Specifically, we develop a simple algorithm that estimates the similarity of economic structures across countries and selects the optimal pool of countries to maximize out-of-sample prediction accuracy of a model. We apply the new alogrithm by nowcasting output growth with a panel of 102 countries and are able to significantly improve forecast accuracy relative to alternative pools. The algortihm improves nowcast performance for advanced economies, as well as emerging market and developing economies, suggesting that machine learning techniques using pooled data could be an important macro tool for many countries.
Nan Hu, Jian Li, and Alexis Meyer-Cirkel
We compared the predictive performance of a series of machine learning and traditional methods for monthly CDS spreads, using firms’ accounting-based, market-based and macroeconomics variables for a time period of 2006 to 2016. We find that ensemble machine learning methods (Bagging, Gradient Boosting and Random Forest) strongly outperform other estimators, and Bagging particularly stands out in terms of accuracy. Traditional credit risk models using OLS techniques have the lowest out-of-sample prediction accuracy. The results suggest that the non-linear machine learning methods, especially the ensemble methods, add considerable value to existent credit risk prediction accuracy and enable CDS shadow pricing for companies missing those securities.
Ms. Ghada Fayad, Chengyu Huang, Yoko Shibuya, and Peng Zhao
This paper applies state-of-the-art deep learning techniques to develop the first sentiment index measuring member countries’ reception of IMF policy advice at the time of Article IV Consultations. This paper finds that while authorities of member countries largely agree with Fund advice, there is variation across country size, external openness, policy sectors and their assessed riskiness, political systems, and commodity export intensity. The paper also looks at how sentiment changes during and after a financial arrangement or program with the Fund, as well as when a country receives IMF technical assistance. The results shed light on key aspects on Fund surveillance while redefining how the IMF can view its relevance, value added, and traction with its member countries.
Ms. Natasha X Che
This paper presents a set of collaborative filtering algorithms that produce product recommendations to diversify and optimize a country's export structure in support of sustainable long-term growth. The recommendation system is able to accurately predict the historical trends in export content and structure for high-growth countries, such as China, India, Poland, and Chile, over 20-year spans. As a contemporary case study, the system is applied to Paraguay, to create recommendations for the country's export diversification strategy.
Jin-Kyu Jung, Manasa Patnam, and Anna Ter-Martirosyan
Forecasting macroeconomic variables is key to developing a view on a country's economic outlook. Most traditional forecasting models rely on fitting data to a pre-specified relationship between input and output variables, thereby assuming a specific functional and stochastic process underlying that process. We pursue a new approach to forecasting by employing a number of machine learning algorithms, a method that is data driven, and imposing limited restrictions on the nature of the true relationship between input and output variables. We apply the Elastic Net, SuperLearner, and Recurring Neural Network algorithms on macro data of seven, broadly representative, advanced and emerging economies and find that these algorithms can outperform traditional statistical models, thereby offering a relevant addition to the field of economic forecasting.