You are looking at 1 - 10 of 46 items for :

  • Information Management x
Clear All
International Monetary Fund. Strategy, Policy, and & Review Department
International Monetary Fund. Research Dept.
It has been two years since the trade tensions erupted and not only captured policymakers’ but also the research community’s attention. Research has quickly zoomed in on understanding trade war rhetoric, tariff implementation, and economic impacts. The first article in the December 2019 issue sheds light on the consequences of the recent trade barriers.
Mr. Serkan Arslanalp, Mr. Marco Marini, and Ms. Patrizia Tumbarello
Vessel traffic data based on the Automatic Identification System (AIS) is a big data source for nowcasting trade activity in real time. Using Malta as a benchmark, we develop indicators of trade and maritime activity based on AIS-based port calls. We test the quality of these indicators by comparing them with official statistics on trade and maritime statistics. If the challenges associated with port call data are overcome through appropriate filtering techniques, we show that these emerging “big data” on vessel traffic could allow statistical agencies to complement existing data sources on trade and introduce new statistics that are more timely (real time), offering an innovative way to measure trade activity. That, in turn, could facilitate faster detection of turning points in economic activity. The approach could be extended to create a real-time worldwide indicator of global trade activity.
Sandile Hlatshwayo, Anne Oeking, Mr. Manuk Ghazanchyan, David Corvino, Ananya Shukla, and Mr. Lamin Y Leigh
Corruption is macro-relevant for many countries, but is often hidden, making measurement of it—and its effects—inherently difficult. Existing indicators suffer from several weaknesses, including a lack of time variation due to the sticky nature of perception-based measures, reliance on a limited pool of experts, and an inability to distinguish between corruption and institutional capacity gaps. This paper attempts to address these limitations by leveraging news media coverage of corruption. We contribute to the literature by constructing the first big data, cross-country news flow indices of corruption (NIC) and anti-corruption (anti-NIC) by running country-specific search algorithms over more than 665 million international news articles. These indices correlate well with existing measures of corruption but offer additional richness in their time-series variation. Drawing on theory from the corporate finance and behavioral economics literature, we also test to what extent news about corruption and anti-corruption efforts affects economic agents’ assessments of corruption and, in turn, economic outcomes. We find that NIC shocks appear to negatively impact both financial (e.g., st